Solveeit Logo

Question

Question: Solve the given trigonometric equation: \[\cos x\cos 2x\cos 3x=\dfrac{1}{4}\] (a) \[x=\left( 2n+1 ...

Solve the given trigonometric equation: cosxcos2xcos3x=14\cos x\cos 2x\cos 3x=\dfrac{1}{4}
(a) x=(2n+1)π4x=\left( 2n+1 \right)\dfrac{\pi }{4}
(b) x=mπ±π6x=m\pi \pm \dfrac{\pi }{6}
(c) x=mπ±π3x=m\pi \pm \dfrac{\pi }{3}
(d) x=(2n+1)π8x=\left( 2n+1 \right)\dfrac{\pi }{8}

Explanation

Solution

Hint: Use trigonometric identity cosa+cosb=2cos(a+b2)cos(ab2)\cos a+\cos b=2\cos \left( \dfrac{a+b}{2} \right)\cos \left( \dfrac{a-b}{2} \right) to simplify the left hand side of the given equation by writing the variables ‘a’ and ‘b’ in terms of ‘x’. Simplify the equation and then equate it to the right hand side. Form equation by assuming cos2x=t\cos 2x=t and factorize it by splitting the middle term. Solve the equation to get the values of x that satisfy the given equation.

Complete step by step answer:
We have the equation cosxcos2xcos3x=14\cos x\cos 2x\cos 3x=\dfrac{1}{4}. We have to find possible values of x that satisfy the given equation. We will simplify the left hand side of the given equation and equate it to the right hand side to get the values of x which satisfy the given equation.
We know that cosa+cosb=2cos(a+b2)cos(ab2)\cos a+\cos b=2\cos \left( \dfrac{a+b}{2} \right)\cos \left( \dfrac{a-b}{2} \right).
Let’s assume a+b2=3x,ab2=x\dfrac{a+b}{2}=3x,\dfrac{a-b}{2}=x.
Simplifying the two equations, we have a+b=6x,ab=2xa+b=6x,a-b=2x.
Adding the two equations, we get 2a=8xa=4x2a=8x\Rightarrow a=4x.
Substituting the value a=4xa=4x in the equation a+b=6xa+b=6x, we have 4x+b=6xb=2x4x+b=6x\Rightarrow b=2x.
Thus, we can write cosxcos3x=12(cos4x+cos2x)\cos x\cos 3x=\dfrac{1}{2}\left( \cos 4x+\cos 2x \right).
So, we can write the equation cosxcos2xcos3x=14\cos x\cos 2x\cos 3x=\dfrac{1}{4} as cosxcos2xcos3x=12(cos4x+cos2x)cos2x=14\cos x\cos 2x\cos 3x=\dfrac{1}{2}\left( \cos 4x+\cos 2x \right)\cos 2x=\dfrac{1}{4}.
Simplifying the above equation, we have cos22x+cos2xcos4x=12.....(1){{\cos }^{2}}2x+\cos 2x\cos 4x=\dfrac{1}{2}.....\left( 1 \right).
We know that cos2a=2cos2a1\cos 2a=2{{\cos }^{2}}a-1.
Substituting a=2xa=2x in the above equation, we have cos4x=2cos22x1\cos 4x=2{{\cos }^{2}}2x-1.
Substituting the above equation in equation (1), we have cos22x+cos2x(2cos22x1)=12{{\cos }^{2}}2x+\cos 2x\left( 2{{\cos }^{2}}2x-1 \right)=\dfrac{1}{2}.
Simplifying the above equation, we have 4cos32x+2cos22x2cos2x=14{{\cos }^{3}}2x+2{{\cos }^{2}}2x-2\cos 2x=1.
Let’s assume cos2x=t\cos 2x=t.
Thus, we have 4t3+2t22t=14{{t}^{3}}+2{{t}^{2}}-2t=1. We will find the roots of this equation.
We can rewrite this equation as 2t2(2t+1)2t1=02{{t}^{2}}\left( 2t+1 \right)-2t-1=0.
Further simplifying the above equation, we have 2t2(2t+1)1(2t+1)=02{{t}^{2}}\left( 2t+1 \right)-1\left( 2t+1 \right)=0.
Taking out the common terms, we have (2t+1)(2t21)=0\left( 2t+1 \right)\left( 2{{t}^{2}}-1 \right)=0.
So, we have t=12,±12t=\dfrac{-1}{2},\pm \dfrac{1}{\sqrt{2}}.
Thus, we have cos2x=12,±12\cos 2x=\dfrac{-1}{2},\pm \dfrac{1}{\sqrt{2}}.
For cos2x=12\cos 2x=\dfrac{-1}{2}, we have 2x=(2n+1)π±π3x=(n+12)π±π62x=\left( 2n+1 \right)\pi \pm \dfrac{\pi }{3}\Rightarrow x=\left( n+\dfrac{1}{2} \right)\pi \pm \dfrac{\pi }{6}.
For cos2x=±12\cos 2x=\pm \dfrac{1}{\sqrt{2}}, we have 2x=nπ±π4x=nπ2±π82x=n\pi \pm \dfrac{\pi }{4}\Rightarrow x=\dfrac{n\pi }{2}\pm \dfrac{\pi }{8}.

Hence, the solutions of the equation cosxcos2xcos3x=14\cos x\cos 2x\cos 3x=\dfrac{1}{4} are x=(2n+1)π8x=\left( 2n+1 \right)\dfrac{\pi }{8} and x=mπ±π6x=m\pi \pm \dfrac{\pi }{6}, which are options (b) and (d).

Note: One must consider all possible values of x which satisfy the given trigonometric equation. We should write the general solution of the trigonometric equation. Also, it’s important to use the trigonometric identity cosa+cosb=2cos(a+b2)cos(ab2)\cos a+\cos b=2\cos \left( \dfrac{a+b}{2} \right)\cos \left( \dfrac{a-b}{2} \right) to simplify the right hand side of the equation. One must also know the values of trigonometric functions at certain angles to find the possible solutions of the trigonometric equation.