Solveeit Logo

Question

Question: Solve the given system of linear equation by Crammer’s rule \(x+y+z=1\) \(ax+by+cz=k\) \({{a}^...

Solve the given system of linear equation by Crammer’s rule
x+y+z=1x+y+z=1
ax+by+cz=kax+by+cz=k
a2x+b2y+c2z=k2{{a}^{2}}x+{{b}^{2}}y+{{c}^{2}}z={{k}^{2}}.

Explanation

Solution

We start solving the problem by writing the given system of linear equations in the form of AX=BAX=B. We then recall the Crammer’s rule that the solution for system of linear equations is x=A1Ax=\dfrac{\left| {{A}_{1}} \right|}{\left| A \right|}, y=A2Ay=\dfrac{\left| {{A}_{2}} \right|}{\left| A \right|}, z=A3Az=\dfrac{\left| {{A}_{3}} \right|}{\left| A \right|} and then write the matrices A, A1{{A}_{1}}, A2{{A}_{2}}, A3{{A}_{3}}. We then find the values of the determinants A\left| A \right|, A1\left| {{A}_{1}} \right|, A2\left| {{A}_{2}} \right|, A3\left| {{A}_{3}} \right| using the facts that determinant of a 3×33\times 3 matrix is pqr stu vwx =ptu wx qsu vx +rst vw \left| \begin{matrix} p & q & r \\\ s & t & u \\\ v & w & x \\\ \end{matrix} \right|=p\left| \begin{matrix} t & u \\\ w & x \\\ \end{matrix} \right|-q\left| \begin{matrix} s & u \\\ v & x \\\ \end{matrix} \right|+r\left| \begin{matrix} s & t \\\ v & w \\\ \end{matrix} \right| and pq rs =(p×s)(q×r)\left| \begin{matrix} p & q \\\ r & s \\\ \end{matrix} \right|=\left( p\times s \right)-\left( q\times r \right). We then use these values to find the required values of x, y and z.

Complete step by step answer:
According to the problem, we are asked to solve the given system of linear equation by Crammer’s rule:
x+y+z=1x+y+z=1
ax+by+cz=kax+by+cz=k
a2x+b2y+c2z=k2{{a}^{2}}x+{{b}^{2}}y+{{c}^{2}}z={{k}^{2}}.
Let us write the given system of linear equations in the form of AX=BAX=B, where
A = coefficient matrix = [111 abc a2b2c2 ]\left[ \begin{matrix} 1 & 1 & 1 \\\ a & b & c \\\ {{a}^{2}} & {{b}^{2}} & {{c}^{2}} \\\ \end{matrix} \right].
X = variable matrix = [x y z ]\left[ \begin{matrix} x \\\ y \\\ z \\\ \end{matrix} \right].
B = constant matrix = [1 k k2 ]\left[ \begin{matrix} 1 \\\ k \\\ {{k}^{2}} \\\ \end{matrix} \right].
From cramer's rule, we know that the solution for system of linear equations is defined as x=A1Ax=\dfrac{\left| {{A}_{1}} \right|}{\left| A \right|}, y=A2Ay=\dfrac{\left| {{A}_{2}} \right|}{\left| A \right|}, z=A3Az=\dfrac{\left| {{A}_{3}} \right|}{\left| A \right|}.
Where A1=[111 kbc k2b2c2 ]{{A}_{1}}=\left[ \begin{matrix} 1 & 1 & 1 \\\ k & b & c \\\ {{k}^{2}} & {{b}^{2}} & {{c}^{2}} \\\ \end{matrix} \right], A2=[111 akc a2k2c2 ]{{A}_{2}}=\left[ \begin{matrix} 1 & 1 & 1 \\\ a & k & c \\\ {{a}^{2}} & {{k}^{2}} & {{c}^{2}} \\\ \end{matrix} \right], A3=[111 abk a2b2k2 ]{{A}_{3}}=\left[ \begin{matrix} 1 & 1 & 1 \\\ a & b & k \\\ {{a}^{2}} & {{b}^{2}} & {{k}^{2}} \\\ \end{matrix} \right].
Let us first find the values of A\left| A \right|, A1\left| {{A}_{1}} \right|, A2\left| {{A}_{2}} \right|, A3\left| {{A}_{3}} \right|.
So, we have A=111 abc a2b2c2 \left| A \right|=\left| \begin{matrix} 1 & 1 & 1 \\\ a & b & c \\\ {{a}^{2}} & {{b}^{2}} & {{c}^{2}} \\\ \end{matrix} \right|.
Let us perform the operations C2C2C1{{C}_{2}}\to {{C}_{2}}-{{C}_{1}} and C3C3C1{{C}_{3}}\to {{C}_{3}}-{{C}_{1}}.
A=11111 abaca a2b2a2c2a2 \Rightarrow \left| A \right|=\left| \begin{matrix} 1 & 1-1 & 1-1 \\\ a & b-a & c-a \\\ {{a}^{2}} & {{b}^{2}}-{{a}^{2}} & {{c}^{2}}-{{a}^{2}} \\\ \end{matrix} \right|.
A=100 abaca a2b2a2c2a2 \Rightarrow \left| A \right|=\left| \begin{matrix} 1 & 0 & 0 \\\ a & b-a & c-a \\\ {{a}^{2}} & {{b}^{2}}-{{a}^{2}} & {{c}^{2}}-{{a}^{2}} \\\ \end{matrix} \right|.
We know that determinant of a 3×33\times 3 matrix is defined as pqr stu vwx =ptu wx qsu vx +rst vw \left| \begin{matrix} p & q & r \\\ s & t & u \\\ v & w & x \\\ \end{matrix} \right|=p\left| \begin{matrix} t & u \\\ w & x \\\ \end{matrix} \right|-q\left| \begin{matrix} s & u \\\ v & x \\\ \end{matrix} \right|+r\left| \begin{matrix} s & t \\\ v & w \\\ \end{matrix} \right|.
A=1baca b2a2c2a2 0aca a2c2a2 +0aba a2b2a2 \Rightarrow \left| A \right|=1\left| \begin{matrix} b-a & c-a \\\ {{b}^{2}}-{{a}^{2}} & {{c}^{2}}-{{a}^{2}} \\\ \end{matrix} \right|-0\left| \begin{matrix} a & c-a \\\ {{a}^{2}} & {{c}^{2}}-{{a}^{2}} \\\ \end{matrix} \right|+0\left| \begin{matrix} a & b-a \\\ {{a}^{2}} & {{b}^{2}}-{{a}^{2}} \\\ \end{matrix} \right|.
We know that pq rs =(p×s)(q×r)\left| \begin{matrix} p & q \\\ r & s \\\ \end{matrix} \right|=\left( p\times s \right)-\left( q\times r \right).
A=((ba)×(c2a2))((b2a2)×(ca))\Rightarrow \left| A \right|=\left( \left( b-a \right)\times \left( {{c}^{2}}-{{a}^{2}} \right) \right)-\left( \left( {{b}^{2}}-{{a}^{2}} \right)\times \left( c-a \right) \right).
A=(ba)×(ca)×((c+a)(b+a))\Rightarrow \left| A \right|=\left( b-a \right)\times \left( c-a \right)\times \left( \left( c+a \right)-\left( b+a \right) \right).
A=(ba)×(ca)×(cb)\Rightarrow \left| A \right|=\left( b-a \right)\times \left( c-a \right)\times \left( c-b \right) ---(1).
Now, we have A1=111 kbc k2b2c2 \left| {{A}_{1}} \right|=\left| \begin{matrix} 1 & 1 & 1 \\\ k & b & c \\\ {{k}^{2}} & {{b}^{2}} & {{c}^{2}} \\\ \end{matrix} \right|.
Let us perform the operations C2C2C1{{C}_{2}}\to {{C}_{2}}-{{C}_{1}} and C3C3C1{{C}_{3}}\to {{C}_{3}}-{{C}_{1}}.
A1=11111 kbkck k2b2k2c2k2 \Rightarrow \left| {{A}_{1}} \right|=\left| \begin{matrix} 1 & 1-1 & 1-1 \\\ k & b-k & c-k \\\ {{k}^{2}} & {{b}^{2}}-{{k}^{2}} & {{c}^{2}}-{{k}^{2}} \\\ \end{matrix} \right|.
A1=100 kbkck k2b2k2c2k2 \Rightarrow \left| {{A}_{1}} \right|=\left| \begin{matrix} 1 & 0 & 0 \\\ k & b-k & c-k \\\ {{k}^{2}} & {{b}^{2}}-{{k}^{2}} & {{c}^{2}}-{{k}^{2}} \\\ \end{matrix} \right|.
We know that determinant of a 3×33\times 3 matrix is defined as pqr stu vwx =ptu wx qsu vx +rst vw \left| \begin{matrix} p & q & r \\\ s & t & u \\\ v & w & x \\\ \end{matrix} \right|=p\left| \begin{matrix} t & u \\\ w & x \\\ \end{matrix} \right|-q\left| \begin{matrix} s & u \\\ v & x \\\ \end{matrix} \right|+r\left| \begin{matrix} s & t \\\ v & w \\\ \end{matrix} \right|.
A1=1bkck b2k2c2k2 0kck k2c2k2 +0kbk k2b2k2 \Rightarrow \left| {{A}_{1}} \right|=1\left| \begin{matrix} b-k & c-k \\\ {{b}^{2}}-{{k}^{2}} & {{c}^{2}}-{{k}^{2}} \\\ \end{matrix} \right|-0\left| \begin{matrix} k & c-k \\\ {{k}^{2}} & {{c}^{2}}-{{k}^{2}} \\\ \end{matrix} \right|+0\left| \begin{matrix} k & b-k \\\ {{k}^{2}} & {{b}^{2}}-{{k}^{2}} \\\ \end{matrix} \right|.
We know that pq rs =(p×s)(q×r)\left| \begin{matrix} p & q \\\ r & s \\\ \end{matrix} \right|=\left( p\times s \right)-\left( q\times r \right).
A1=((bk)×(c2k2))((b2k2)×(ck))\Rightarrow \left| {{A}_{1}} \right|=\left( \left( b-k \right)\times \left( {{c}^{2}}-{{k}^{2}} \right) \right)-\left( \left( {{b}^{2}}-{{k}^{2}} \right)\times \left( c-k \right) \right).
A1=(bk)×(ck)×((c+k)(b+k))\Rightarrow \left| {{A}_{1}} \right|=\left( b-k \right)\times \left( c-k \right)\times \left( \left( c+k \right)-\left( b+k \right) \right).
A1=(bk)×(ck)×(cb)\Rightarrow \left| {{A}_{1}} \right|=\left( b-k \right)\times \left( c-k \right)\times \left( c-b \right) ---(2).
So, we have A2=111 akc a2k2c2 \left| {{A}_{2}} \right|=\left| \begin{matrix} 1 & 1 & 1 \\\ a & k & c \\\ {{a}^{2}} & {{k}^{2}} & {{c}^{2}} \\\ \end{matrix} \right|.
Let us perform the operations C2C2C1{{C}_{2}}\to {{C}_{2}}-{{C}_{1}} and C3C3C1{{C}_{3}}\to {{C}_{3}}-{{C}_{1}}.
A2=11111 akaca a2k2a2c2a2 \Rightarrow \left| {{A}_{2}} \right|=\left| \begin{matrix} 1 & 1-1 & 1-1 \\\ a & k-a & c-a \\\ {{a}^{2}} & {{k}^{2}}-{{a}^{2}} & {{c}^{2}}-{{a}^{2}} \\\ \end{matrix} \right|.
A2=100 akaca a2k2a2c2a2 \Rightarrow \left| {{A}_{2}} \right|=\left| \begin{matrix} 1 & 0 & 0 \\\ a & k-a & c-a \\\ {{a}^{2}} & {{k}^{2}}-{{a}^{2}} & {{c}^{2}}-{{a}^{2}} \\\ \end{matrix} \right|.
We know that determinant of a 3×33\times 3 matrix is defined as pqr stu vwx =ptu wx qsu vx +rst vw \left| \begin{matrix} p & q & r \\\ s & t & u \\\ v & w & x \\\ \end{matrix} \right|=p\left| \begin{matrix} t & u \\\ w & x \\\ \end{matrix} \right|-q\left| \begin{matrix} s & u \\\ v & x \\\ \end{matrix} \right|+r\left| \begin{matrix} s & t \\\ v & w \\\ \end{matrix} \right|.
A2=1kaca k2a2c2a2 0aca a2c2a2 +0aka a2k2a2 \Rightarrow \left| {{A}_{2}} \right|=1\left| \begin{matrix} k-a & c-a \\\ {{k}^{2}}-{{a}^{2}} & {{c}^{2}}-{{a}^{2}} \\\ \end{matrix} \right|-0\left| \begin{matrix} a & c-a \\\ {{a}^{2}} & {{c}^{2}}-{{a}^{2}} \\\ \end{matrix} \right|+0\left| \begin{matrix} a & k-a \\\ {{a}^{2}} & {{k}^{2}}-{{a}^{2}} \\\ \end{matrix} \right|.
We know that pq rs =(p×s)(q×r)\left| \begin{matrix} p & q \\\ r & s \\\ \end{matrix} \right|=\left( p\times s \right)-\left( q\times r \right).
A2=((ka)×(c2a2))((k2a2)×(ca))\Rightarrow \left| {{A}_{2}} \right|=\left( \left( k-a \right)\times \left( {{c}^{2}}-{{a}^{2}} \right) \right)-\left( \left( {{k}^{2}}-{{a}^{2}} \right)\times \left( c-a \right) \right).
A2=(ka)×(ca)×((c+a)(k+a))\Rightarrow \left| {{A}_{2}} \right|=\left( k-a \right)\times \left( c-a \right)\times \left( \left( c+a \right)-\left( k+a \right) \right).
A2=(ka)×(ca)×(ck)\Rightarrow \left| {{A}_{2}} \right|=\left( k-a \right)\times \left( c-a \right)\times \left( c-k \right) ---(3).
So, we have A3=111 abk a2b2k2 \left| {{A}_{3}} \right|=\left| \begin{matrix} 1 & 1 & 1 \\\ a & b & k \\\ {{a}^{2}} & {{b}^{2}} & {{k}^{2}} \\\ \end{matrix} \right|.
Let us perform the operations C2C2C1{{C}_{2}}\to {{C}_{2}}-{{C}_{1}} and C3C3C1{{C}_{3}}\to {{C}_{3}}-{{C}_{1}}.
A3=11111 abaka a2b2a2k2a2 \Rightarrow \left| {{A}_{3}} \right|=\left| \begin{matrix} 1 & 1-1 & 1-1 \\\ a & b-a & k-a \\\ {{a}^{2}} & {{b}^{2}}-{{a}^{2}} & {{k}^{2}}-{{a}^{2}} \\\ \end{matrix} \right|.
A3=100 abaka a2b2a2k2a2 \Rightarrow \left| {{A}_{3}} \right|=\left| \begin{matrix} 1 & 0 & 0 \\\ a & b-a & k-a \\\ {{a}^{2}} & {{b}^{2}}-{{a}^{2}} & {{k}^{2}}-{{a}^{2}} \\\ \end{matrix} \right|.
We know that determinant of a 3×33\times 3 matrix is defined as pqr stu vwx =ptu wx qsu vx +rst vw \left| \begin{matrix} p & q & r \\\ s & t & u \\\ v & w & x \\\ \end{matrix} \right|=p\left| \begin{matrix} t & u \\\ w & x \\\ \end{matrix} \right|-q\left| \begin{matrix} s & u \\\ v & x \\\ \end{matrix} \right|+r\left| \begin{matrix} s & t \\\ v & w \\\ \end{matrix} \right|.
A3=1baka b2a2k2a2 0aka a2k2a2 +0aba a2b2a2 \Rightarrow \left| {{A}_{3}} \right|=1\left| \begin{matrix} b-a & k-a \\\ {{b}^{2}}-{{a}^{2}} & {{k}^{2}}-{{a}^{2}} \\\ \end{matrix} \right|-0\left| \begin{matrix} a & k-a \\\ {{a}^{2}} & {{k}^{2}}-{{a}^{2}} \\\ \end{matrix} \right|+0\left| \begin{matrix} a & b-a \\\ {{a}^{2}} & {{b}^{2}}-{{a}^{2}} \\\ \end{matrix} \right|.
We know that pq rs =(p×s)(q×r)\left| \begin{matrix} p & q \\\ r & s \\\ \end{matrix} \right|=\left( p\times s \right)-\left( q\times r \right).
A3=((ba)×(k2a2))((b2a2)×(ka))\Rightarrow \left| {{A}_{3}} \right|=\left( \left( b-a \right)\times \left( {{k}^{2}}-{{a}^{2}} \right) \right)-\left( \left( {{b}^{2}}-{{a}^{2}} \right)\times \left( k-a \right) \right).
A3=(ba)×(ka)×((k+a)(b+a))\Rightarrow \left| {{A}_{3}} \right|=\left( b-a \right)\times \left( k-a \right)\times \left( \left( k+a \right)-\left( b+a \right) \right).
A3=(ba)×(ka)×(kb)\Rightarrow \left| {{A}_{3}} \right|=\left( b-a \right)\times \left( k-a \right)\times \left( k-b \right) ---(4).
Now, let us find the values of x, y and z.
So, we have x=AA1x=\dfrac{\left| A \right|}{\left| {{A}_{1}} \right|}.
x=(ba)×(ca)×(cb)(bk)×(ck)×(cb)\Rightarrow x=\dfrac{\left( b-a \right)\times \left( c-a \right)\times \left( c-b \right)}{\left( b-k \right)\times \left( c-k \right)\times \left( c-b \right)}.
x=(ba)(ca)(bk)(ck)\Rightarrow x=\dfrac{\left( b-a \right)\left( c-a \right)}{\left( b-k \right)\left( c-k \right)}.
Now, we have y=AA2y=\dfrac{\left| A \right|}{\left| {{A}_{2}} \right|}.
y=(ba)×(ca)×(cb)(ka)×(ca)×(ck)\Rightarrow y=\dfrac{\left( b-a \right)\times \left( c-a \right)\times \left( c-b \right)}{\left( k-a \right)\times \left( c-a \right)\times \left( c-k \right)}.
y=(ba)(cb)(ka)(ck)\Rightarrow y=\dfrac{\left( b-a \right)\left( c-b \right)}{\left( k-a \right)\left( c-k \right)}.
Now, we have z=AA3z=\dfrac{\left| A \right|}{\left| {{A}_{3}} \right|}.
z=(ba)×(ca)×(cb)(ba)×(ka)×(kb)\Rightarrow z=\dfrac{\left( b-a \right)\times \left( c-a \right)\times \left( c-b \right)}{\left( b-a \right)\times \left( k-a \right)\times \left( k-b \right)}.
z=(ca)(cb)(ka)(kb)\Rightarrow z=\dfrac{\left( c-a \right)\left( c-b \right)}{\left( k-a \right)\left( k-b \right)}.

\therefore We have found the solution set of the given linear equations as x=(ba)(ca)(bk)(ck)x=\dfrac{\left( b-a \right)\left( c-a \right)}{\left( b-k \right)\left( c-k \right)}, y=(ba)(cb)(ka)(ck)y=\dfrac{\left( b-a \right)\left( c-b \right)}{\left( k-a \right)\left( c-k \right)}, z=(ca)(cb)(ka)(kb)z=\dfrac{\left( c-a \right)\left( c-b \right)}{\left( k-a \right)\left( k-b \right)}.

Note: We can see that the given problem contains a huge amount of calculations so, we need to perform each step carefully in order to avoid confusion and calculation mistakes. We should not confuse while writing the matrices A1{{A}_{1}}, A2{{A}_{2}}, A3{{A}_{3}} as writing these matrices wrongly will lead us to incorrect solutions. Similarly, we can expect the problems to find the solution of the given system of linear equations by using matrix inversion method or Gauss-Jordan method.