Solveeit Logo

Question

Question: Solve the given question in a detail manner: Prove that: \[\tan 2x = \dfrac{{2\tan x}}{{1 - {{\...

Solve the given question in a detail manner:
Prove that:
tan2x=2tanx1tan2x\tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}

Explanation

Solution

Take the left-hand side and the right-hand side of the given equation separately. Consider the right-hand side and by replacing the tanx\tan x in terms of sinx\sin x and cosx\cos x simplify the terms until the right-hand side value is obtained.

Complete step-by-step solution:
Given,
tan2x=2tanx1tan2x\tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}
Let us take the two sides individually. Here, first let us take the right-hand side and simplify it to get the left-hand side;
Right-hand side =2tanx1tan2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}
Let us replace the tanx\tan x in the terms of sinx\sin x and cosx\cos x
tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}}
Now, substituting the tanx\tan x in the right-hand side we get;
2(sinxcosx)1(sin2xcos2x)\Rightarrow \dfrac{{2\left( {\dfrac{{\sin x}}{{\cos x}}} \right)}}{{1 - \left( {\dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}}} \right)}}
Simplifying the denominator, we get;
2sinxcosxcos2xsin2xcos2x\Rightarrow \dfrac{{\dfrac{{2\sin x}}{{\cos x}}}}{{\dfrac{{{{\cos }^2}x - {{\sin }^2}x}}{{{{\cos }^2}x}}}}
In the trigonometric relations, we have;
cos2xsin2x=cos2x{\cos ^2}x - {\sin ^2}x = \cos 2x
So, substituting this in the expression, we get;
2sinxcosxcos2xcos2x\Rightarrow \dfrac{{\dfrac{{2\sin x}}{{\cos x}}}}{{\dfrac{{\cos 2x}}{{{{\cos }^2}x}}}}
By rearranging the expression, we get;
2sinxcos2xcosxcos2x\Rightarrow \dfrac{{2\sin x{{\cos }^2}x}}{{\cos x\cos 2x}}
Cancelling out the common terms in the numerator and the denominator, we get;
2sinxcosxcos2x\Rightarrow \dfrac{{2\sin x\cos x}}{{\cos 2x}}
Now, in the trigonometric relations, we have;
2sinxcosx=sin2x2\sin x\cos x = \sin 2x
Substituting this above value in the obtained expression, we get;
sin2xcos2x\Rightarrow \dfrac{{\sin 2x}}{{\cos 2x}}
This can be written as;
tan2x\tan 2x
The left-hand side=tan2x = \tan 2x
We have the right-hand side=tan2x = \tan 2x
And left-hand side=tan2x = \tan 2x
Since the right-hand side and the left-hand side are equal, we have that;
tan2x=2tanx1tan2x\tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}
Hence proved.

Note: Here, we can prove the values of sin2x\sin 2x and cos2x\cos 2x.
sin2x\sin 2x can be written as sin(x+x)\sin \left( {x + x} \right)
sin2x=sin(x+x)\Rightarrow \sin 2x = \sin \left( {x + x} \right)
We have the formula:
sin(A+B)=sinAcosB+cosAsinB\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B
Using this formula, we substitute xx in the place of AA and BB since both the angles are the same.
sin(x+x)=sinxcosx+cosxsinx\sin \left( {x + x} \right) = \sin x\cos x + \cos x\sin x
Now, since both the terms are equal to each other, we can add the terms.
sin2x=2sinxcosx\Rightarrow \sin 2x = 2\sin x\cos x
cos2x\cos 2x can be written as cos(x+x)\cos \left( {x + x} \right)
We have the formula:
cos(A+B)=cosAcosBsinAsinB\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B
Using this formula, we substitute xx in the place of AA and BB since both the angles are the same.
cos(x+x)=cosxcosxsinxsinx\cos \left( {x + x} \right) = \cos x\cos x - \sin x\sin x
The like terms are multiplied and the simplified equation, we get;
cos2x=cos2xsin2x\cos 2x = {\cos ^2}x - {\sin ^2}x