Solveeit Logo

Question

Question: Solve the given quadratic equation for x: \(8{{x}^{2}}-22x-21=0\)...

Solve the given quadratic equation for x:
8x222x21=08{{x}^{2}}-22x-21=0

Explanation

Solution

- Hint: We can solve the above quadratic equation by factorization method. In the factorization method, we will split the term 22x in such a way that the split terms of 22x on multiplication will yield 21×821\times 8.

Complete step-by-step solution -

The equation given in the question that we have to solve is:
8x222x21=08{{x}^{2}}-22x-21=0
We are going to split 22 in 22x in such a way that the terms in the split on multiplication yield 21×821\times 8.
Now, the factors of 21×821\times 8 are 7×3×4×27\times 3\times 4\times 2.
From the factors of 21×821\times 8 we can write 21×821\times 8 as 28×628\times 6.
If we subtract 6 from 28 we will get 22 which is the coefficient of x in the given quadratic equation.
Splitting 22x22x as:
22x=28x6x22x=28x-6x
Substituting the above value of 22x22x in the given quadratic equation we get,
8x222x21=0 8x2(28x6x)21=0 8x228x+6x21=0 4x(2x7)+3(2x7)=0 (4x+3)(2x7)=0 \begin{aligned} & 8{{x}^{2}}-22x-21=0 \\\ & \Rightarrow 8{{x}^{2}}-\left( 28x-6x \right)-21=0 \\\ & \Rightarrow 8{{x}^{2}}-28x+6x-21=0 \\\ & \Rightarrow 4x\left( 2x-7 \right)+3\left( 2x-7 \right)=0 \\\ & \Rightarrow \left( 4x+3 \right)\left( 2x-7 \right)=0 \\\ \end{aligned}
Equating 4x+34x+3 equal to 0 and 2x72x-7 equal to 0 we get,
4x+3=0;2x7=0 x=34,72 \begin{aligned} & 4x+3=0;2x-7=0 \\\ & \Rightarrow x=-\dfrac{3}{4},\dfrac{7}{2} \\\ \end{aligned}
Hence, the solution of the given quadratic equation is x=34,72x=-\dfrac{3}{4},\dfrac{7}{2}.

Note: The alternative way of solving the above quadratic equation as follows:
8x222x21=08{{x}^{2}}-22x-21=0
We are solving the roots of the equation by discriminant formula.
Discriminant of a quadratic equation is denoted by D.
For the quadratic equation ax2+bx+c=0a{{x}^{2}}+bx+c=0 the value of D is:
D=b24acD={{b}^{2}}-4ac
Comparing this value of D with the given quadratic equation 8x222x21=08{{x}^{2}}-22x-21=0 we get,
D=(22)24(8)(21) D=484+672 D=1156 \begin{aligned} & D={{\left( -22 \right)}^{2}}-4\left( 8 \right)\left( -21 \right) \\\ & \Rightarrow D=484+672 \\\ & \Rightarrow D=1156 \\\ \end{aligned}
The discriminant formula for finding the roots of quadratic equation ax2+bx+c=0a{{x}^{2}}+bx+c=0 is:
x=b±D2ax=\dfrac{-b\pm \sqrt{D}}{2a}
Comparing the above value of x with the given quadratic equation 8x222x21=08{{x}^{2}}-22x-21=0 we get,
x=22±115616 x=22±3416 \begin{aligned} & x=\dfrac{22\pm \sqrt{1156}}{16} \\\ & \Rightarrow x=\dfrac{22\pm 34}{16} \\\ \end{aligned}
Taking plus sign we get the value of x as:
x=22+3416 x=5616=72 \begin{aligned} & x=\dfrac{22+34}{16} \\\ & \Rightarrow x=\dfrac{56}{16}=\dfrac{7}{2} \\\ \end{aligned}
Taking minus sign we get the value of x as:
x=223416 x=1216=34 \begin{aligned} & x=\dfrac{22-34}{16} \\\ & \Rightarrow x=-\dfrac{12}{16}=-\dfrac{3}{4} \\\ \end{aligned}
Hence, we have got the same values of x as that we have obtained in solution part of the question.