Solveeit Logo

Question

Question: Solve the given polynomial equation for x: \(6{{x}^{6}}-25{{x}^{5}}+31{{x}^{4}}-31{{x}^{2}}+25x-6=...

Solve the given polynomial equation for x:
6x625x5+31x431x2+25x6=06{{x}^{6}}-25{{x}^{5}}+31{{x}^{4}}-31{{x}^{2}}+25x-6=0

Explanation

Solution

- Hint: Club the coefficient of 6 in the one bracket. Similarly, club the coefficient of 25 and 31 in the brackets. After solving these bracket terms, you will find (x1)(x+1)\left( x-1 \right)\left( x+1 \right) as a common term in the given expression. Then solve the remaining expression which is a polynomial function with degree 4. The remaining expression is solved by dividing the expression by x2{{x}^{2}} and then solving further.

Complete step-by-step solution -

The equation given in the question as follows:
6x625x5+31x431x2+25x6=06{{x}^{6}}-25{{x}^{5}}+31{{x}^{4}}-31{{x}^{2}}+25x-6=0
Clubbing the coefficient of 6 in one bracket, coefficient of 25 in the another bracket and coefficient of 31 in the other bracket we get,
6(x61)25x(x41)+31x2(x21)=06\left( {{x}^{6}}-1 \right)-25x\left( {{x}^{4}}-1 \right)+31{{x}^{2}}\left( {{x}^{2}}-1 \right)=0
In the above equation (x61)\left( {{x}^{6}}-1 \right) is written as ((x2)313)\left( {{\left( {{x}^{2}} \right)}^{3}}-{{1}^{3}} \right) and (x41)\left( {{x}^{4}}-1 \right)as((x2)212)\left( {{\left( {{x}^{2}} \right)}^{2}}-{{1}^{2}} \right).
6((x2)31)25x((x2)21)+31x2(x21)=0 6(x21)(x4+1+x2)25x(x21)+31x2(x21)=0 (x21)(6(x4+1+x2)25x+31x2)=0 (x21)(6x4+6+6x225x+31x2)=0 (x21)(6x4+6+37x225x)=0 \begin{aligned} & 6\left( {{\left( {{x}^{2}} \right)}^{3}}-1 \right)-25x\left( {{\left( {{x}^{2}} \right)}^{2}}-1 \right)+31{{x}^{2}}\left( {{x}^{2}}-1 \right)=0 \\\ & \Rightarrow 6\left( {{x}^{2}}-1 \right)\left( {{x}^{4}}+1+{{x}^{2}} \right)-25x\left( {{x}^{2}}-1 \right)+31{{x}^{2}}\left( {{x}^{2}}-1 \right)=0 \\\ & \Rightarrow \left( {{x}^{2}}-1 \right)\left( 6\left( {{x}^{4}}+1+{{x}^{2}} \right)-25x+31{{x}^{2}} \right)=0 \\\ & \Rightarrow \left( {{x}^{2}}-1 \right)\left( 6{{x}^{4}}+6+6{{x}^{2}}-25x+31{{x}^{2}} \right)=0 \\\ & \Rightarrow \left( {{x}^{2}}-1 \right)\left( 6{{x}^{4}}+6+37{{x}^{2}}-25x \right)=0 \\\ \end{aligned}
From the above equation, solving two brackets individually we get:
x21=0 (x1)(x+1)=0 \begin{aligned} & {{x}^{2}}-1=0 \\\ & \Rightarrow \left( x-1 \right)\left( x+1 \right)=0 \\\ \end{aligned}
From the above equation, we have two solutions of x; 1 & -1.
And equating the expression in the other bracket to 0 we get,
6x4+37x225x325x+6=06{{x}^{4}}+37{{x}^{2}}-25{{x}^{3}}-25x+6=0
Dividing the above equation by x2{{x}^{2}} we get,
6x4x2+37x2x225x3x225xx2+6x2=0 6x2+3725x25(1x)+6x2=0 6(x2+1x2)25(x+1x)+37=0 \begin{aligned} & \dfrac{6{{x}^{4}}}{{{x}^{2}}}+\dfrac{37{{x}^{2}}}{{{x}^{2}}}-\dfrac{25{{x}^{3}}}{{{x}^{2}}}-\dfrac{25x}{{{x}^{2}}}+\dfrac{6}{{{x}^{2}}}=0 \\\ & \Rightarrow 6{{x}^{2}}+37-25x-25\left( \dfrac{1}{x} \right)+\dfrac{6}{{{x}^{2}}}=0 \\\ & \Rightarrow 6\left( {{x}^{2}}+\dfrac{1}{{{x}^{2}}} \right)-25\left( x+\dfrac{1}{x} \right)+37=0 \\\ \end{aligned}
In the above equation, we can write x2+1x2=(x+1x)22{{x}^{2}}+\dfrac{1}{{{x}^{2}}}={{\left( x+\dfrac{1}{x} \right)}^{2}}-2.
6((x+1x)22)25(x+1x)+37=06\left( {{\left( x+\dfrac{1}{x} \right)}^{2}}-2 \right)-25\left( x+\dfrac{1}{x} \right)+37=0
Let us assume x+1x=tx+\dfrac{1}{x}=t in the above equation.
6(t22)25t+37=0 6t21225t+37=0 6t225t+25=0 \begin{aligned} & 6\left( {{t}^{2}}-2 \right)-25t+37=0 \\\ & \Rightarrow 6{{t}^{2}}-12-25t+37=0 \\\ & \Rightarrow 6{{t}^{2}}-25t+25=0 \\\ \end{aligned}
Now, solving the quadratic equation in t we get:
6t215t10t+25=0 3t(2t5)5(2t5)=0 (3t5)(2t5)=0 \begin{aligned} & 6{{t}^{2}}-15t-10t+25=0 \\\ & \Rightarrow 3t\left( 2t-5 \right)-5\left( 2t-5 \right)=0 \\\ & \Rightarrow \left( 3t-5 \right)\left( 2t-5 \right)=0 \\\ \end{aligned}
From the above equation, we have two values of t i.e. t=53,52t=\dfrac{5}{3},\dfrac{5}{2}.
As we have assumed that x+1x=tx+\dfrac{1}{x}=t so equating x+1xx+\dfrac{1}{x} to 53&52\dfrac{5}{3}\And \dfrac{5}{2} we get,
First of all we are taking x+1x=53x+\dfrac{1}{x}=\dfrac{5}{3}.
x+1x=53 x2+1=53x 3x2+3=5x 3x25x+3=0 \begin{aligned} & x+\dfrac{1}{x}=\dfrac{5}{3} \\\ & \Rightarrow {{x}^{2}}+1=\dfrac{5}{3}x \\\ & \Rightarrow 3{{x}^{2}}+3=5x \\\ & \Rightarrow 3{{x}^{2}}-5x+3=0 \\\ \end{aligned}
Now, we are going to solve the quadratic in x.
x=5±254.3.36 x=5±25366 x=5±116 x=5±i116 \begin{aligned} & x=\dfrac{5\pm \sqrt{25-4.3.3}}{6} \\\ & \Rightarrow x=\dfrac{5\pm \sqrt{25-36}}{6} \\\ & \Rightarrow x=\dfrac{5\pm \sqrt{-11}}{6} \\\ & \Rightarrow x=\dfrac{5\pm i\sqrt{11}}{6} \\\ \end{aligned}
We are taking x+1x=52x+\dfrac{1}{x}=\dfrac{5}{2} and then solving this equation we get,
x+1x=52 2x2+2=5x 2x25x+2=0 2x24xx+2=0 2x(x2)1(x2)=0 (2x1)(x2)=0 \begin{aligned} & x+\dfrac{1}{x}=\dfrac{5}{2} \\\ & \Rightarrow 2{{x}^{2}}+2=5x \\\ & \Rightarrow 2{{x}^{2}}-5x+2=0 \\\ & \Rightarrow 2{{x}^{2}}-4x-x+2=0 \\\ & \Rightarrow 2x\left( x-2 \right)-1\left( x-2 \right)=0 \\\ & \Rightarrow \left( 2x-1 \right)\left( x-2 \right)=0 \\\ \end{aligned}
Solving above equation will give the values of x as follows:
2x1=0;x2=0 x=12,2 \begin{aligned} & 2x-1=0;x-2=0 \\\ & \Rightarrow x=\dfrac{1}{2},2 \\\ \end{aligned}
Hence, all the solutions of the given equation are x=1,1,2,12,5±i116x=1,-1,2,\dfrac{1}{2},\dfrac{5\pm i\sqrt{11}}{6}.

Note: Some points should be kept in mind while solving such polynomial question that:
Degree of the polynomial will determine the number of plausible solutions of the given polynomial equation. As in this question, the degree of the polynomial is 6 so 6 solutions are possible.
Finding solutions of the quadratic equation is simple but here the given equation has a degree of 6 so through hit and trial we can find some solutions like if you put 1 in the place of x, you will get 0 then divide the equation 6x625x5+31x431x2+25x6=06{{x}^{6}}-25{{x}^{5}}+31{{x}^{4}}-31{{x}^{2}}+25x-6=0 by (x1)\left( x-1 \right). The quotient of this division is6x519x4+12x3+12x219x+6=06{{x}^{5}}-19{{x}^{4}}+12{{x}^{3}}+12{{x}^{2}}-19x+6=0 then by hit and trial you will find that x=1x=-1 will satisfy this new equation then divide this new equation by (x+1)\left( x+1 \right).
The quotient of this new division is 6x4+37x225x325x+6=06{{x}^{4}}+37{{x}^{2}}-25{{x}^{3}}-25x+6=0. Now, it is solved with the same method as we have used in the solution part of the question.
From this hit and trial method we have found that x=±1x=\pm 1 is the solution of the given equation6x625x5+31x431x2+25x6=06{{x}^{6}}-25{{x}^{5}}+31{{x}^{4}}-31{{x}^{2}}+25x-6=0.