Question
Question: Solve the given matrix equation for the value of y. \[y:\left( {\begin{array}{*{20}{c}} {x + y...
Solve the given matrix equation for the value of y.
{x + y}&x;&x; \\\ x&{x + y}&x; \\\ x&x;&{x + y} \end{array}} \right) = 16(3x + 4)$$Explanation
Solution
Hint: In this question we will use row and column transformation arithmetic operations to simplify the matrix and after simplification we will calculate the determinant and after further simplification we will get our solution.
Given that:
{x + y}&x;&x; \\\ x&{x + y}&x; \\\ x&x;&{x + y} \end{array}} \right) = 16(3x + 4)$$ Taking L.H.S, we will proceed further $$ = \left( {\begin{array}{*{20}{c}} {x + y}&x;&x; \\\ x&{x + y}&x; \\\ x&x;&{x + y} \end{array}} \right)$$ We will apply arithmetic operation on row second $ro{w_2} \to ro{w_2} - ro{w_3}$= \left( {\begin{array}{{20}{c}}
{x + y}&x;&x; \\
{x - x}&{x + y - x}&{x - (x + y)} \\
x&x;&{x + y}
\end{array}} \right) \\
= \left( {\begin{array}{{20}{c}}
{x + y}&x;&x; \\
0&y;&{ - y)} \\
x&x;&{x + y}
\end{array}} \right) \\
= \left( {\begin{array}{{20}{c}}
{x + y}&x;&x; \\
0&y;&{ - y)} \\
{x - (x + y)}&{x - x}&{x + y - x}
\end{array}} \right) \\
= \left( {\begin{array}{{20}{c}}
{x + y}&x;&x; \\
0&y;&{ - y)} \\
{ - y}&0&y;
\end{array}} \right) \\