Solveeit Logo

Question

Question: Solve the given inverse trigonometric function \({\tan ^{ - 1}}1 + {\cos ^{ - 1}}\left( {\dfrac{{ - ...

Solve the given inverse trigonometric function tan11+cos1(12)+sin1(12){\tan ^{ - 1}}1 + {\cos ^{ - 1}}\left( {\dfrac{{ - 1}}{2}} \right) + {\sin ^{ - 1}}\left( {\dfrac{{ - 1}}{2}} \right)

Explanation

Solution

Hint:- We have to use properties of inverse trigonometric functions cos1(cosx)=x{\cos ^{ - 1}}\left( {\cos x} \right) = x, tan1(tanx)=x{\tan ^{ - 1}}\left( {\tan x} \right) = x, sin1(sinx)=x{\sin ^{ - 1}}\left( {\sin x} \right) = x to solve the given problem.

Complete step by step answer:
We need to evaluate
tan11+cos1(12)+sin1(12){\tan ^{ - 1}}1 + {\cos ^{ - 1}}\left( {\dfrac{{ - 1}}{2}} \right) + {\sin ^{ - 1}}\left( {\dfrac{{ - 1}}{2}} \right)
We can write it as
tan1(tanπ4)+cos1(cos2π3)+sin1(sin(π6)){\tan ^{ - 1}}\left( {\tan \dfrac{\pi }{4}} \right) + {\cos ^{ - 1}}\left( {\cos \dfrac{{2\pi }}{3}} \right) + {\sin ^{ - 1}}\left( {\sin \left( {\dfrac{{ - \pi }}{6}} \right)} \right) (1) \ldots \ldots \left( 1 \right)
tanπ4=1 cos2π3=12 sin(π6)=sin(π6)=12  \because \tan \dfrac{\pi }{4} = 1 \\\ \cos \dfrac{{2\pi }}{3} = \dfrac{{ - 1}}{2} \\\ \sin \left( {\dfrac{{ - \pi }}{6}} \right) = - \sin \left( {\dfrac{\pi }{6}} \right) = \dfrac{{ - 1}}{2} \\\
tan1(tanπ4)=π4{\tan ^{ - 1}}\left( {\tan \dfrac{\pi }{4}} \right) = \dfrac{\pi }{4} Because we know tan1(tanx)=x{\tan ^{ - 1}}\left( {\tan x} \right) = x
For π2<x<π2\dfrac{{ - \pi }}{2} < x < \dfrac{\pi }{2}
cos1(cos2π3)=2π3{\cos ^{ - 1}}\left( {\cos \dfrac{{2\pi }}{3}} \right) = \dfrac{{2\pi }}{3} Because we know cos1(cosx)=x{\cos ^{ - 1}}\left( {\cos x} \right) = x
For 0xπ0 \leqslant x \leqslant \pi
sin1(sinπ6)=π6{\sin ^{ - 1}}\left( {\sin \dfrac{{ - \pi }}{6}} \right) = \dfrac{{ - \pi }}{6} Because we know sin1(sinx)=x{\sin ^{ - 1}}\left( {\sin x} \right) = x
For π2xπ2\dfrac{{ - \pi }}{2} \leqslant x \leqslant \dfrac{\pi }{2}
Now equation (1)\left( 1 \right)becomes
π4+2π3π6\dfrac{\pi }{4} + \dfrac{{2\pi }}{3} - \dfrac{\pi }{6}=3π4\dfrac{{3\pi }}{4}
Required answer is 3π4\dfrac{{3\pi }}{4}

Note: - Whenever we get these types of questions the key concept of solving these types of questions is we should have knowledge of changing inverse trigonometric functions according to requirement and remember the domain and range of these inverse trigonometric functions.