Solveeit Logo

Question

Question: Solve the given integration to choose the correct answer : \(\int {\dfrac{{dx}}{{9 + 16{{\sin }^2}...

Solve the given integration to choose the correct answer :
dx9+16sin2x\int {\dfrac{{dx}}{{9 + 16{{\sin }^2}x}}} is equal to
A. 13tan1(3tanx5)+c\dfrac{1}{3}{\tan ^{ - 1}}\left( {\dfrac{{3\tan x}}{5}} \right) + c.
B. 15tan1(tanx15)+c\dfrac{1}{5}{\tan ^{ - 1}}\left( {\dfrac{{\tan x}}{{15}}} \right) + c.
C. 115tan1(tanx5)+c\dfrac{1}{{15}}{\tan ^{ - 1}}\left( {\dfrac{{\tan x}}{5}} \right) + c.
D. 115tan1(5tanx3)+c\dfrac{1}{{15}}{\tan ^{ - 1}}\left( {\dfrac{{5\tan x}}{3}} \right) + c.

Explanation

Solution

Hint : In this question, we will use the algorithm to evaluate the different forms of integral and also use the method of integration by substitution. The form 1a+bsin2xdx\int {\dfrac{1}{{a + b{{\sin }^2}x}}dx} can be evaluated by using the following algorithm.
Step 1 : divide numerator and denominator both by cos2x{\cos ^2}x.
Step 2 : replace sec2x{\sec ^2}x, if any, in denominator by 1+tan2x1 + {\tan ^2}x.
Step 3 : put tan x = t so that sec2xdx=dt{\sec ^2}xdx = dt. This substitution reduces the integral in the form 1at2+bt+cdt\int {\dfrac{1}{{a{t^2} + bt + c}}dt} .
Step 4 : evaluate the integral obtained in step 3 by using the suitable methods.

Complete step-by-step answer:
The given integral is,
dx9+16sin2x\int {\dfrac{{dx}}{{9 + 16{{\sin }^2}x}}}
First, Divide the numerator and denominator both by cos2x{\cos ^2}x.
1cos2xdx9+16sin2xcos2x=sec2xdx9sec2x+16tan2x\Rightarrow \int {\dfrac{{\dfrac{1}{{{{\cos }^2}x}}dx}}{{\dfrac{{9 + 16{{\sin }^2}x}}{{{{\cos }^2}x}}}}} = \int {\dfrac{{{{\sec }^2}xdx}}{{9{{\sec }^2}x + 16{{\tan }^2}x}}}
Now, Replace sec2x{\sec ^2}x by 1+tan2x1 + {\tan ^2}x.
sec2xdx9(1+tan2x)+16tan2x sec2xdx9+25tan2x  \Rightarrow \int {\dfrac{{{{\sec }^2}xdx}}{{9(1 + {{\tan }^2}x) + 16{{\tan }^2}x}}} \\\ \Rightarrow \int {\dfrac{{{{\sec }^2}xdx}}{{9 + 25{{\tan }^2}x}}} \\\
sec2xdx(3)2+(5tanx)2\Rightarrow \int {\dfrac{{{{\sec }^2}xdx}}{{{{(3)}^2} + {{(5\tan x)}^2}}}} ……….. (i)
Let t = 5 tan x
Differentiating the both sides, we will get
dt=5sec2xdx dt5=sec2xdx  dt = 5{\sec ^2}xdx \\\ \dfrac{{dt}}{5} = {\sec ^2}xdx \\\
Putting this value in equation (i), we get
15dt(3)2+(t)2\Rightarrow \dfrac{1}{5}\int {\dfrac{{dt}}{{{{(3)}^2} + {{(t)}^2}}}}. ……… (ii)
As we know that
dx(x)2+(a)2=1atan1(xa)+c\int {\dfrac{{dx}}{{{{(x)}^2} + {{(a)}^2}}} = \dfrac{1}{a}{{\tan }^{ - 1}}\left( {\dfrac{x}{a}} \right) + c} .
Thus, comparing it with equation (ii), it will become,
15dt(3)2+(t)2=13×5tan1(t3)+c 115tan1(t3)+c  \Rightarrow \dfrac{1}{5}\int {\dfrac{{dt}}{{{{(3)}^2} + {{(t)}^2}}} = \dfrac{1}{{3 \times 5}}{{\tan }^{ - 1}}\left( {\dfrac{t}{3}} \right) + c} \\\ \Rightarrow \dfrac{1}{{15}}{\tan ^{ - 1}}\left( {\dfrac{t}{3}} \right) + c \\\
Now, we will replace the value of t by 5 tan x.
Then we get,
115tan1(5tanx3)+c\Rightarrow \dfrac{1}{{15}}{\tan ^{ - 1}}\left( {\dfrac{{5\tan x}}{3}} \right) + c
Hence, we can say that dx9+16sin2x\int {\dfrac{{dx}}{{9 + 16{{\sin }^2}x}}} is equal to 115tan1(5tanx3)+c\dfrac{1}{{15}}{\tan ^{ - 1}}\left( {\dfrac{{5\tan x}}{3}} \right) + c.
Therefore, the correct answer is option (D).

Note : Whenever we ask such types of questions, we will use the methods of solving the different integral forms. First, we have to simplify the given integral using the suitable algorithm according to its form. Then we will evaluate that obtained integral step by step by using the substitution method. After that we can easily solve that and through this, we will get the required answer.