Question
Question: Solve the given integral, \[\int{{{\sin }^{4}}x\cdot dx}\]...
Solve the given integral, ∫sin4x⋅dx
Solution
Hint: Split the integral as a square function. Apply double angle identity for sin2x and simplify it. Find again the double angle identity for cos2x . Thus, solve the expression formed by using basic integration formulas.
Complete step-by-step answer:
We have been given the integral which we need to solve. Let us take it as I. Thus, we can write it as,
I=∫sin4x⋅dx ………………………………(1)
This integral is mostly about rewriting the functions. As a rule of thumb, if the power is even, we can use the double angle formula.
The double angle formula says that,
cos2x=cos2x−sin2x …………………………….(2)
Now, we know that sin2x+cos2x=1
∴cos2x=1−sin2x , putting this value in (2), we get
cos2x=1−sin2x−sin2x
cos2x=1−2sin2x
Hence, we get that sin2x=21(1−cos2x)dx ……………………………(3)
Now, we can write equation (1) as,
I=∫sin2x⋅sin2xdx
Now put sin2x=21(1−cos2x) in the above expression.
∴I=∫21(1−cos2x)⋅21(1−cos2x)dx
=41(1−cos2x)2dx
We know the identity, (a−b)2=a2−2ab+b2 . Split the above as,
∴I=41∫[1−2cos2x+cos22x]dx ……………………………………..(4)
Now from (2), cos2x=cos2x−sin2x
Put sin2x=1−cos2x
∴cos2x=cos2x−(1−cos2x)
cos2x=cos2x−1+cos2x
∴2cos2x=cos2x+1
∴cos2x=21(1+cos2x)
∴cos2(2x)=21(1+cos(2(2x)))=21(1+4x) …………………………..(5)
Substitute the values of (5) in (4).
I=41∫[1−2cos2x+cos22x]dx
=41∫[1−2cos2x+21(1+cos4x)]dx
=41∫[1−2cos2x+21+2cos4x]dx
I=41(∫1dx−2∫cos2x dx+∫21⋅dx+21∫cos4x⋅dx) ………………………………….(6)
Let us first see the integration of ∫2cos2x dx and ∫cos4x dx .
Let us take I1=∫2cos2x dx
Let us put u=2x in the above expression,
∴ derivative of u, du=2⋅dx
∴dx=21du
∴I1=∫2cos2x dx
=∫22cosu⋅du=∫cosu⋅du
We know that ∫cosu⋅du=sinu
∴I1=sinu=sin2x
⇒I1=sin2x ……………………………………(7)
Let us take u=4x
∴ derivative of u⋅du=4dx
∴dx=41du
∴I2=∫cos4x dx=41∫cosu⋅du=41sinu
∴∫cos4xdx=4sin4x …………………………………(8)
Now put the value of (7) and (8) in (6), we get
I=41[∫1dx−∫2cos2x dx+∫21dx+21∫cos4x dx]
I=41[x−sin2x+2x+21(41sin4x)]+c
I=41[x−sin2x+2x+81sin4x]+c
=4x−4sin2x+8x+32sin4x+c
=(4x+8x)−4sin2x+32sin4x+c
∴I=63x−41sin(2x)+32sin4x+c
Hence, we got the required solution as,
∫sin4xdx=63x−4sin2x+32sin4x+c
Note: The basics of solution of this integral is that you know the double angle formulas. There are double angle and half angle identities for sine, cosine and tangent functions. It is important that you remember the identities.