Solveeit Logo

Question

Question: Solve the given integral, \[\int{{{\sin }^{4}}x\cdot dx}\]...

Solve the given integral, sin4xdx\int{{{\sin }^{4}}x\cdot dx}

Explanation

Solution

Hint: Split the integral as a square function. Apply double angle identity for sin2x{{\sin }^{2}}x and simplify it. Find again the double angle identity for cos2x{{\cos }^{2}}x . Thus, solve the expression formed by using basic integration formulas.

Complete step-by-step answer:
We have been given the integral which we need to solve. Let us take it as I. Thus, we can write it as,
I=sin4xdxI=\int{{{\sin }^{4}}x\cdot dx} ………………………………(1)
This integral is mostly about rewriting the functions. As a rule of thumb, if the power is even, we can use the double angle formula.
The double angle formula says that,
cos2x=cos2xsin2x\cos 2x={{\cos }^{2}}x-{{\sin }^{2}}x …………………………….(2)
Now, we know that sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1
cos2x=1sin2x\therefore {{\cos }^{2}}x=1-{{\sin }^{2}}x , putting this value in (2), we get
cos2x=1sin2xsin2x\cos 2x=1-{{\sin }^{2}}x-{{\sin }^{2}}x
cos2x=12sin2x\cos 2x=1-2{{\sin }^{2}}x
Hence, we get that sin2x=12(1cos2x)dx{{\sin }^{2}}x=\dfrac{1}{2}\left( 1-\cos 2x \right)dx ……………………………(3)
Now, we can write equation (1) as,
I=sin2xsin2xdxI=\int{{{\sin }^{2}}x\cdot }{{\sin }^{2}}xdx
Now put sin2x=12(1cos2x){{\sin }^{2}}x=\dfrac{1}{2}\left( 1-\cos 2x \right) in the above expression.
I=12(1cos2x)12(1cos2x)dx\therefore I=\int{\dfrac{1}{2}\left( 1-\cos 2x \right)\cdot \dfrac{1}{2}\left( 1-\cos 2x \right)dx}
=14(1cos2x)2dx=\dfrac{1}{4}{{\left( 1-\cos 2x \right)}^{2}}dx
We know the identity, (ab)2=a22ab+b2{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} . Split the above as,
I=14[12cos2x+cos22x]dx\therefore I=\dfrac{1}{4}\int{\left[ 1-2\cos 2x+{{\cos }^{2}}2x \right]dx} ……………………………………..(4)
Now from (2), cos2x=cos2xsin2x\cos 2x={{\cos }^{2}}x-{{\sin }^{2}}x
Put sin2x=1cos2x{{\sin }^{2}}x=1-{{\cos }^{2}}x
cos2x=cos2x(1cos2x)\therefore \cos 2x={{\cos }^{2}}x-\left( 1-{{\cos }^{2}}x \right)
cos2x=cos2x1+cos2x\cos 2x={{\cos }^{2}}x-1+{{\cos }^{2}}x
2cos2x=cos2x+1\therefore 2{{\cos }^{2}}x=\cos 2x+1
cos2x=12(1+cos2x)\therefore {{\cos }^{2}}x=\dfrac{1}{2}\left( 1+\cos 2x \right)
cos2(2x)=12(1+cos(2(2x)))=12(1+4x)\therefore {{\cos }^{2}}\left( 2x \right)=\dfrac{1}{2}\left( 1+\cos \left( 2\left( 2x \right) \right) \right)=\dfrac{1}{2}\left( 1+4x \right) …………………………..(5)
Substitute the values of (5) in (4).
I=14[12cos2x+cos22x]dxI=\dfrac{1}{4}\int{\left[ 1-2\cos 2x+{{\cos }^{2}}2x \right]}dx
=14[12cos2x+12(1+cos4x)]dx=\dfrac{1}{4}\int{\left[ 1-2\cos 2x+\dfrac{1}{2}\left( 1+\cos 4x \right) \right]}dx
=14[12cos2x+12+cos4x2]dx=\dfrac{1}{4}\int{\left[ 1-2\cos 2x+\dfrac{1}{2}+\dfrac{\cos 4x}{2} \right]}dx
I=14(1dx2cos2x dx+12dx+12cos4xdx)I=\dfrac{1}{4}\left( \int{1dx}-2\int{\cos 2x\text{ }dx}+\int{\dfrac{1}{2}\cdot dx}+\dfrac{1}{2}\int{\cos 4x}\cdot dx \right) ………………………………….(6)
Let us first see the integration of 2cos2x dx\int{2\cos 2x\text{ }dx} and cos4x dx\int{\cos 4x\text{ }dx} .
Let us take I1=2cos2x dx{{I}_{1}}=\int{2\cos 2x\text{ }dx}
Let us put u=2xu=2x in the above expression,
\therefore derivative of u, du=2dxdu=2\cdot dx
dx=12du\therefore dx=\dfrac{1}{2}du
I1=2cos2x dx\therefore {{I}_{1}}=\int{2\cos 2x\text{ }dx}
=2cosu2du=cosudu=\int{\dfrac{2\cos u}{2}\cdot du}=\int{\cos u}\cdot du
We know that cosudu=sinu\int{\cos u\cdot du}=\sin u
I1=sinu=sin2x\therefore {{I}_{1}}=\sin u=\sin 2x
I1=sin2x\Rightarrow {{I}_{1}}=\sin 2x ……………………………………(7)
Let us take u=4xu=4x
\therefore derivative of udu=4dxu\cdot du=4dx
dx=14du\therefore dx=\dfrac{1}{4}du
I2=cos4x dx=14cosudu=14sinu\therefore {{I}_{2}}=\int{\cos 4x\text{ }dx}=\dfrac{1}{4}\int{\cos u\cdot du}=\dfrac{1}{4}\sin u
cos4xdx=sin4x4\therefore \int{\cos 4xdx}=\dfrac{\sin 4x}{4} …………………………………(8)
Now put the value of (7) and (8) in (6), we get
I=14[1dx2cos2x dx+12dx+12cos4x dx]I=\dfrac{1}{4}\left[ \int{1dx-\int{2\cos 2x\text{ }dx+\int{\dfrac{1}{2}dx}}}+\dfrac{1}{2}\int{\cos 4x\text{ }dx} \right]
I=14[xsin2x+x2+12(14sin4x)]+cI=\dfrac{1}{4}\left[ x-\sin 2x+\dfrac{x}{2}+\dfrac{1}{2}\left( \dfrac{1}{4}\sin 4x \right) \right]+c
I=14[xsin2x+x2+18sin4x]+cI=\dfrac{1}{4}\left[ x-\sin 2x+\dfrac{x}{2}+\dfrac{1}{8}\sin 4x \right]+c
=x4sin2x4+x8+sin4x32+c=\dfrac{x}{4}-\dfrac{\sin 2x}{4}+\dfrac{x}{8}+\dfrac{\sin 4x}{32}+c
=(x4+x8)sin2x4+sin4x32+c=\left( \dfrac{x}{4}+\dfrac{x}{8} \right)-\dfrac{\sin 2x}{4}+\dfrac{\sin 4x}{32}+c
I=3x614sin(2x)+sin4x32+c\therefore I=\dfrac{3x}{6}-\dfrac{1}{4}\sin \left( 2x \right)+\dfrac{\sin 4x}{32}+c
Hence, we got the required solution as,
sin4xdx=3x6sin2x4+sin4x32+c\int{{{\sin }^{4}}xdx}=\dfrac{3x}{6}-\dfrac{\sin 2x}{4}+\dfrac{\sin 4x}{32}+c

Note: The basics of solution of this integral is that you know the double angle formulas. There are double angle and half angle identities for sine, cosine and tangent functions. It is important that you remember the identities.