Solveeit Logo

Question

Question: Solve the given inequality \({{\log }_{\dfrac{1}{3}}}\left[ \dfrac{{{\left| z-3 \right|}^{2}}+2}{11\...

Solve the given inequality log13[z32+211z32]>1{{\log }_{\dfrac{1}{3}}}\left[ \dfrac{{{\left| z-3 \right|}^{2}}+2}{11\left| z-3 \right|-2} \right]>1, where z is a complex number.

Explanation

Solution

We start solving the problem by assigning a variable for z3\left| z-3 \right|. We then use the facts log1ax=logax{{\log }_{\dfrac{1}{a}}}x=-{{\log }_{a}}x, if logax<b{{\log }_{a}}x < b (a>1)\left( a> 1 \right), then x<abx< {{a}^{b}} and a1=1a{{a}^{-1}}=\dfrac{1}{a} to proceed further through the problem. We then use the fact that if the inequality (xa)(xb)<0\left( x-a \right)\left( x-b \right)< 0, (a<b)\left( a< b \right) holds true, then the solution set for the variable x is a<x<ba < x < b. We then assume the general form of the complex number for z and find the required solution.

Complete step-by-step solution:
According to the problem, we need to solve the inequality log13[z32+211z32]>1{{\log }_{\dfrac{1}{3}}}\left[ \dfrac{{{\left| z-3 \right|}^{2}}+2}{11\left| z-3 \right|-2} \right]>1.
Let us assume z3=p\left| z-3 \right|=p. So, we get log13[p2+211p2]>1{{\log }_{\dfrac{1}{3}}}\left[ \dfrac{{{p}^{2}}+2}{11p-2} \right]>1 ---(1).
We know that log1ax=logax{{\log }_{\dfrac{1}{a}}}x=-{{\log }_{a}}x. We use this in equation (1).
log3[p2+211p2]>1\Rightarrow -{{\log }_{3}}\left[ \dfrac{{{p}^{2}}+2}{11p-2} \right]>1.
log3[p2+211p2]<1\Rightarrow {{\log }_{3}}\left[ \dfrac{{{p}^{2}}+2}{11p-2} \right]<-1 ---(2).
We know that if logax<b{{\log }_{a}}x < b (a>1)\left( a > 1 \right), then x<abx<{{a}^{b}}. We use this in equation (2).
p2+211p2<31\Rightarrow \dfrac{{{p}^{2}}+2}{11p-2}<{{3}^{-1}} ---(3).
We know that a1=1a{{a}^{-1}}=\dfrac{1}{a}. We use this in equation (3).
p2+211p2<13\Rightarrow \dfrac{{{p}^{2}}+2}{11p-2}<\dfrac{1}{3}.
3(p2+2)<1(11p2)\Rightarrow 3\left( {{p}^{2}}+2 \right)<1\left( 11p-2 \right).
3p2+6<11p2\Rightarrow 3{{p}^{2}}+6<11p-2.
3p211p+6+2<0\Rightarrow 3{{p}^{2}}-11p+6+2<0.
3p211p+8<0\Rightarrow 3{{p}^{2}}-11p+8<0.
3p23p8p+8<0\Rightarrow 3{{p}^{2}}-3p-8p+8<0.
3p(p1)8(p1)<0\Rightarrow 3p\left( p-1 \right)-8\left( p-1 \right)<0.
(3p8)(p1)<0\Rightarrow \left( 3p-8 \right)\left( p-1 \right)<0.
(p83)(p1)<0\Rightarrow \left( p-\dfrac{8}{3} \right)\left( p-1 \right)<0 ---(4).
We know that if the inequality (xa)(xb)<0\left( x-a \right)\left( x-b \right)<0, (a<b)\left( a < b \right) holds true, then the solution set for the variable x is a<x<ba < x < b. We use this result for the equation (4).
So, the solution set for p for the inequality in equation (4) is 1<p<831 < p < \dfrac{8}{3}. Now we substitute p=z3p=\left| z-3 \right|.
So, we get 1<z3<831<\left| z-3 \right|<\dfrac{8}{3} ---(5).
Since z is a complex number, we assume z=x+iyz=x+iy. We substitute this in equation (5).
1<x+iy3<83\Rightarrow 1<\left| x+iy-3 \right|<\dfrac{8}{3}.
1<(x3)+iy<83\Rightarrow 1<\left| \left( x-3 \right)+iy \right|<\dfrac{8}{3} ---(6).
We know that the magnitude of complex number a+iba+ib is defined as a+ib=a2+b2\left| a+ib \right|=\sqrt{{{a}^{2}}+{{b}^{2}}}.
1<(x3)2+y2<83\Rightarrow 1<\sqrt{{{\left( x-3 \right)}^{2}}+{{y}^{2}}}<\dfrac{8}{3} ---(7).
We know that if a<x<ba < x < b and a>0a>0, b>0b>0, then we get a2<x2<b2{{a}^{2}} < {{x}^{2}} < {{b}^{2}}. We use this result in equation (7).
12<(x3)2+y2<(83)2\Rightarrow {{1}^{2}} < {{\left( x-3 \right)}^{2}}+{{y}^{2}} < {{\left( \dfrac{8}{3} \right)}^{2}}.
So, the solution set represents a circular ring or annulus with an inner radius of 1 unit and an outer radius of 83\dfrac{8}{3} units.
\therefore The solution for the given inequality log13[z32+211z32]>1{{\log }_{\dfrac{1}{3}}}\left[ \dfrac{{{\left| z-3 \right|}^{2}}+2}{11\left| z-3 \right|-2} \right]>1 is a circular ring or annulus with inner radius 1 units and outer radius 83\dfrac{8}{3} units.

Note: We should not say that the solution set is the circles whose radius is between 1 and 83\dfrac{8}{3}. Because in that the region present inside radius 1 will also come as a solution for the inequality. We should not be confused with the formulas and make calculation mistakes while solving this problem. We can also find the solution set for x and y which is also an interval present between two real values. Whenever we see z in the problem, we take z as a complex number unless it is mentioned otherwise.