Solveeit Logo

Question

Mathematics Question on inequalities

Solve the given inequality for realx:x4<(5x2)3(7x3)5x: \frac{x}{4} < \frac{(5x-2)}{3} -\frac{ (7x-3)}{5}.

Answer

x4<(5x2)3(7x3)5\frac{x}{4} < \frac{(5x-2)}{3} -\frac{ (7x-3)}{5}
x4<5(5x22(7x3))15⇒ \frac{x}{4} < \frac{5(5x-2-2(7x-3))}{15}
x4<25x1021x+915⇒ \frac{x}{4} < \frac{25x-10-21x+9}{15}
x4<4x115⇒\frac{ x}{4} <\frac{ 4x-1}{15}
15x<4(4x1)⇒ 15x < 4(4x - 1)
15x<16x4⇒ 15x < 16x - 4
4<16x15x⇒ 4 < 16x - 15x
4<x⇒ 4 < x
Thus, all real numbers x, which are greater than 4, are the solutions of the given inequality.
Hence, the solution set of the given inequality is (4, ∞).