Solveeit Logo

Question

Mathematics Question on inequalities

Solve the given inequality for real x:(2x1)3(3x2)4(2x)5x:\frac{ (2x -1)}{3} ≥ \frac{(3x -2)}{4} - \frac{(2-x)}{5}.

Answer

(2x1)3(3x2)4(2x)5\frac{ (2x -1)}{3} ≥ \frac{(3x -2)}{4} - \frac{(2-x)}{5}
(2x1)35(3x2)4(2x)20⇒ \frac{(2x -1)}{3} ≥ \frac{5(3x -2) - 4(2-x)}{20}
(2x1)315x108+4x20⇒ \frac{(2x -1)}{3} ≥ \frac{15x -10 - 8 + 4x}{20}
(2x1)319x1820⇒\frac{ (2x -1)}{3} ≥ \frac{19x - 18}{20}
40x2057x54⇒ 40x - 20 ≥ 57x - 54
20+5457x40x⇒ - 20 + 54 ≥ 57x - 40x
3417x⇒ 34 ≥ 17x
2x⇒ 2 ≥ x
Thus, all real numbers x, which are less than or equal to 2, are the solutions of the given inequality.

Hence, the solution set of the given inequality is (–∞, 2].