Question
Question: Solve the given indefinite integral:\[\int {{x^4}{e^{2x}}dx = } \] A. \[\dfrac{{{e^{2x}}}}{4}\left...
Solve the given indefinite integral:∫x4e2xdx=
A. 4e2x(2x4−4x3+6x2−6x+3)+c
B. 2e2x(2x4−4x3+6x2−6x+3)+c
C. 8e2x(2x4+4x3+6x2+6x+3)+c
D. 4e2x(2x4+4x3+6x2+6x+3)+c
Solution
Hint: To solve the given question above we will first put 2x=t and convert whole integrals in terms of t. Now use the integration by parts method to integrate the given function and at last replace t with its original value.
Complete step-by-step answer:
In the question given, we have to find the value of ∫e2x.x4dx. Let its value be I. Thus, we have:
I=∫x4e2xdx
Now, we will put 2x=t .On differentiating both sides we will get:
2dx=dt
⇒dx=2dt
Thus, we will get:
I=∫(2t)4et(2dt)\I=(251)∫et.t4dt
Now, we will calculate the value of ∫et.t with the help of by parts. According to by parts theorem of integration, we have:
∫uv=u∫v−∫u∫v
In our case u=tandv−et . Thus, we will get:
∫et.tdt=t∫etdt−∫dtdt∫et(dt)2∫ettdt=tet−∫et(dt)
∫ettdt=tet−et+c1 . . . . . . . . . . . . . (i)
Now we will calculate the value of ∫etttdt. In this function, we will again use by-parts. In this case, we will take u=tandv=ett . Thus, we will get:
∫ett2dt=t∫ettdt−∫dtdt∫(ett)(dt)2 . . . . . . . . . . . . . (ii)
Now, we will put the value of ∫ettdt from (i) into (ii). Thus, we will get following equation:
∫ett2dt=t[tet−et]−∫(tet−et)dt+c2∫ett2dt=t2et−tet−∫tetdt+∫etdt+c2∫ett2dt=t2et−tet−(tet−et)+et+c2
∫ett2dt=t2et−2tet+2et+c2 . . . . . . . . . . . . . (iii)
Now, we will calculate the value of ∫ett3 by the help of by-parts. In this case, we will take u=tandv=ett2 . Thus, we will get:
∫ett3dt=t∫ett2dt−∫dtdt∫(ett2)(dt)2 . . . . . . . . . . . . . (iv)
Now, we will put the value of ett2 from (iii) to (iv). Thus, we will get:
⇒∫ett3dt=t[t2et−2tet+2et]−∫(t2et−2tet+2et)dt+c3 ⇒∫ett3dt=t3et−2t2et+2tet−∫t2etdt+2∫tetdt−2∫etdt+c3 ⇒∫ett3dt=t3et−2t2et+2tet−[t2et−2tet+2et]+2[tet−et]−2et+c3 ⇒∫ett3dt=t3et−2t2et+2tet−t2et+2tet−2et+2tet−2et−2et+c3
⇒∫ett3dt=t3et−3t2et−6tet−6et+c3 . . . . . . . . . . . . . (v)
Now, we will calculate the value of ett4dt by the help of by-parts. In this case, we will take u=tandv=ett3 . Thus, we will get:
∫ett4dt=t∫ett3dt−∫dtdt∫(ett3)(dt)2 . . . . . . . . . . . . (vi)
Now, we will put the value of ett3dt from (v) to (vi). Thus, we will get:
\begin{array}{l} \Rightarrow \int {{e^t}{t^4}\,dt = } \,t\left[ {{t^3}{e^t} - 3{t^2}{e^t} + 6t{e^t} - 6{e^t}} \right] - \int {\left( {{t^3}{e^t} - 3{t^2}{e^t} + 6t{e^t} - 6{e^t}} \right)} \,dt + {c_4}\\\ \Rightarrow \int {{e^t}{t^4}\,dt = } \,{t^4}{e^t} - 3{t^3}{e^t} + 6{t^2}{e^t} - 6t{e^t} - \int {{t^3}{e^t}dt + \int {3{t^2}{e^t}dt} - 6\int {t{e^t}dt} \,} + 6\int {{e^t}dt} \, + {c_4}\\\ \Rightarrow \int {{e^t}{t^4}\,dt = } \,{t^4}{e^t} - 3{t^3}{e^t} + 6{t^2}{e^t} - 6t{e^t} - \left[ {{t^3}{e^t} - 3{t^2}{e^t} + 6t{e^t} - 6{e^t}} \right] + 3\left[ {{t^2}{e^t} - 2t{e^t} + 2{e^t}} \right] - 6\left[ {t{e^t} - {e^t}} \right] + 6{e^t} + {c_4}\end{array}$$$$ \Rightarrow \int {{e^t}{t^4}\,dt = } \,{t^4}{e^t} - 4{t^3}{e^t} + 12{t^2}{e^t} - 24t{e^t} + 24{e^t} + {c_4} . . . . . . . . . . . . (vii)
Now, we will put the value of ∫ett4 from (vii) to I. Thus, we will get the following equation:
⇒I=251[t4et−4t3et+12t2et−24tet+24et]+c ⇒I=32et[t4−4t3+12t2−24t+24]+c
Now, we will put the value of y back to 2x. Thus, we will get the following result:
⇒I=32e2x[(2x)4−4(2x)3+12(2x)2−24(2x)+24]+c ⇒I=32e2x[16x4−32x3+48x2−48x+24]+c ⇒I=328e2x[2x4−4x3+6x2−6x+3]+c ⇒I=4e2x[2x4−4x3+6x2−6x+3]+c
Hence, option (a) is correct.
Note: The shortcut method for finding the integrals of ettn, where n is an integer is given below:
∫ettn=et[tn−dtd(tn)+dt2d2(tn)−dt3d3(tn)+............(−1)ndtndn(tn)]
In our case n=4 so, we will get:
∫ett4=et[t4−dtd(t4)+dt2d2(t4)−dt3d3(t4)+dt4d4(t4)]+c∫ett4=et[t4−4t3+12t2−24t+24]+c