Solveeit Logo

Question

Question: Solve the given expression, \[\dfrac{d(cosecx)}{dx}\] ....

Solve the given expression, d(cosecx)dx\dfrac{d(cosecx)}{dx} .

Explanation

Solution

Hint: We know that, cosecx=1sinx=(sinx)1\text{cosecx=}\dfrac{\text{1}}{\text{sinx}}={{(sinx)}^{-1}} . We have the term sinx\operatorname{sinx} in the numerator of the expression d(sinx)1dx\dfrac{d{{(sinx)}^{-1}}}{dx} . Now using chain rule we can write d(sinx)1dx\dfrac{d{{(sinx)}^{-1}}}{dx} as d(sinx)1dsinx×dsinxdx\dfrac{d{{(sinx)}^{-1}}}{d\sin x}\times \dfrac{d\sin x}{dx} . We know that, dxndx=nxn1\dfrac{d{{x}^{n}}}{dx}=n{{x}^{n-1}} and dsinxdx=cosx\dfrac{d\sin x}{dx}=\cos x . Now, using these formulas we can solve further.

Complete step-by-step answer:
According to the question, we have to solve d(cosecx)dx\dfrac{d(cosecx)}{dx} ……………………(1)
Here, our function to differentiate is cosecx\text{cosecx} .
We know the relation between sine function and cosec function. That is, cosec is reciprocal of sine function.
sinx=1cosecx=(sinx)1\sin x=\dfrac{1}{\cos ecx}={{(sinx)}^{-1}} …………………(2)
Using equation (1) and equation (2), we get
d(cosecx)dx=d(sinx)1dx\dfrac{d(cosecx)}{dx}=\dfrac{d{{(sinx)}^{-1}}}{dx} …………………(3)
In equation (3), we can see that direct differentiation is complex. We need to simplify it in simpler form.
Using chain rule, we can simplify it.
d(sinx)1dsinx×dsinxdx\dfrac{d{{(sinx)}^{-1}}}{d\sin x}\times \dfrac{d\sin x}{dx} ……………………….(4)
We know the formula,
dsinxdx=cosx\dfrac{d\sin x}{dx}=\cos x …………………….(5)
From equation (4), and equation (5), we get
d(sinx)1dsinx×dsinxdx\dfrac{d{{(sinx)}^{-1}}}{d\sin x}\times \dfrac{d\sin x}{dx}
=d(sinx)-1dsinx !!×!! cosx\text{=}\dfrac{\text{d(sinx}{{\text{)}}^{\text{-1}}}}{\text{dsinx}}\text{ }\\!\\!\times\\!\\!\text{ cosx} …………………………(6)
Replacing sinx\text{sinx} by y in the above equation(6), we get
dy1dy×cosx\dfrac{d{{y}^{-1}}}{dy}\times \cos x …………………..(7)
We know the formula that,
dyndy=nyn1\dfrac{d{{y}^{n}}}{dy}=n{{y}^{n-1}}
Putting n=-1 in the above equation, we get
dy1dy=y11=y2\dfrac{d{{y}^{-1}}}{dy}=-{{y}^{-1-1}}=-{{y}^{-2}} …………………….(8)
From equation (7) and equation (8), we get
dy1dy×cosx\dfrac{d{{y}^{-1}}}{dy}\times \cos x
=y2.cosx=-{{y}^{-2}}.\cos x …………………(9)
We had replaced sinx\text{sinx} by y. So here, we are replacing y by sinx\text{sinx} .
Now, replacing y by sinx\text{sinx} in equation (9), we get
=y2.cosx=-{{y}^{-2}}.\cos x
=(sinx)2cosx=-{{(sinx)}^{-2}}\cos x
=cosx(sinx)2=-\dfrac{\cos x}{{{(sinx)}^{2}}} …………………..(10)
We know that, cosecx=1sinx\text{cosecx=}\dfrac{\text{1}}{\text{sinx}} and cosxsinx=cotx\dfrac{\cos x}{\sin x}=\cot x .
Transforming equation (10), we get
=cosx(sinx)2=-\dfrac{\cos x}{{{(sinx)}^{2}}}
=cosx(sinx)(sinx)=-\dfrac{\cos x}{(sinx)(sinx)}
=cotx.cosecx=-cotx.cosecx
Hence, d(cosecx)dx=cotx.cosecx\dfrac{d(cosecx)}{dx}=-cotx.cosecx .

Note: In chain rule one may think as d(sinx)1dx=d(sinx)1dcosx×dcosxdx\dfrac{d{{(sinx)}^{-1}}}{dx}=\dfrac{d{{(sinx)}^{-1}}}{d\cos x}\times \dfrac{d\cos x}{dx} . If we do so then our differentiation will become complex to solve. So, we can’t solve this question by this approach. We can see that the numerator of the expression d(sinx)1dx\dfrac{d{{(sinx)}^{-1}}}{dx} has the term sinx\operatorname{sinx} . So, in chain rule we have to use sinx\operatorname{sinx} in order to make the differentiation easy to solve.