Solveeit Logo

Question

Question: Solve the given expression as, \(\cot A+\csc A=5\) . Find the value of \(\cos A\) ....

Solve the given expression as,
cotA+cscA=5\cot A+\csc A=5 . Find the value of cosA\cos A .

Explanation

Solution

Hint: Using bas identities convert the given expression in terms of cosA\cos A and sinA\sin A. Equate the expression to k and find the expression for cosA\cos A and sinA\sin A . Equate them in cos2A+sin2A=1{{\cos }^{2}}A+{{\sin }^{2}}A=1 and solve for k. Thus, substitute the value of k back and get the value of cosA\cos A .

Complete step-by-step answer:
We have been given an expression from which we have to find the value of cosA\cos A .
We have been given, cotA+cscA=5\cot A+\csc A=5 ………………………………….(1)
We know the basic identity that cotA=cosAsinA\cot A=\dfrac{\cos A}{\sin A} and cscA=1sinA\csc A=\dfrac{1}{\sin A}
Thus, we can rewrite (1) as,
cotA+cscA=5\cot A+\csc A=5
cosAsinA+1sinA=5\Rightarrow \dfrac{\cos A}{\sin A}+\dfrac{1}{\sin A}=5
1+cosAsinA=5\therefore \dfrac{1+\cos A}{\sin A}=5 , now let us apply cross multiplication property
1+cosA5=sinA=k\dfrac{1+\cos A}{5}=\sin A=k , let us say that its equal to k
1+cosA5=k\therefore \dfrac{1+\cos A}{5}=k and sinA=k\sin A=k
cosA=5k1\therefore \cos A=5k-1 and sinA=k\sin A=k
We know that cos2θ+sin2θ=1{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1
Similarly, cos2A+sin2A=1{{\cos }^{2}}A+{{\sin }^{2}}A=1
Apply values of cosA\cos A and sinA\sin A in the above expression.
cos2A+sin2A=1{{\cos }^{2}}A+{{\sin }^{2}}A=1
(5k1)2+k2=1{{\left( 5k-1 \right)}^{2}}+{{k}^{2}}=1
We know the basic identity, (ab)2=a22ab+b2{{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} . We can expand the above as,
(5k)22×5k×1+12+k2=1{{\left( 5k \right)}^{2}}-2\times 5k\times 1+{{1}^{2}}+{{k}^{2}}=1
25k210k+1+k2=125{{k}^{2}}-10k+1+{{k}^{2}}=1
i.e. 26k210k=026{{k}^{2}}-10k=0
2k(13k5)=02k\left( 13k-5 \right)=0
Thus, we get that 2k=02k=0 and 13k5=013k-5=0 k=513\Rightarrow k=\dfrac{5}{13}
Hence, we get the value of k=0k=0 and k=513k=\dfrac{5}{13}
Now, cosA=5k1\cos A=5k-1
Let us put the value of k as 0 and 513\dfrac{5}{13} in the above expression when k=0k=0 , cosA=5×01\cos A=5\times 0-1
cosA=1\therefore \cos A=-1
when k=513, cosA=5×5131k=\dfrac{5}{13},\text{ }\cos A=\dfrac{5\times 5}{13}-1
=251313=1213=\dfrac{25-13}{13}=\dfrac{12}{13}
cosA=1213\therefore \cos A=\dfrac{12}{13}
Hence, we got the value of cosA\cos A as 1-1 and 1213\dfrac{12}{13} .

Note: We have given that the expression is equal to a numeral 5. Thus, we need a numeral or fraction as the value of cosA\cos A . Don’t stop it as cosA=5sinA1\cos A=5\sin A-1 , as the value of cosA\cos A . Equate the expression to k and get the value of k.