Solveeit Logo

Question

Question: Solve the given equation \( {x^2} + x - (a + 2)(a + 1) = 0 \) by using a quadratic equation formula....

Solve the given equation x2+x(a+2)(a+1)=0{x^2} + x - (a + 2)(a + 1) = 0 by using a quadratic equation formula.

Explanation

Solution

Hint: The Quadratic Formula for quadratic equation ax2+bx+c=0a`{x^2} + bx + c = 0 is given by
x=b±b24ac2ax = \dfrac{{ - b \pm \sqrt {{b^2} - 4a`c} }}{{2a`}}. Here we will use aa' in place of ‘a’ because ‘a’ is already used in question.

Complete step-by-step solution:
The given quadratic equation is x2+x(a+2)(a+1)=0{x^2} + x - (a + 2)(a + 1) = 0
On comparing the above equation with standard quadratic equation ax2+bx+c=0a`{x^2} + bx + c = 0,
we get
a=1 b=1 c=(a+2)(a+1)  a` = 1 \\\ b = 1 \\\ c = - (a + 2)(a + 1) \\\
On putting values of a,b,ca`,b,c in Quadratic Formula we get
x=b±b24ac2a x=1±1+4(a+2)(a+1)2   x = \dfrac{{ - b \pm \sqrt {{b^2} - 4a`c} }}{{2a`}} \\\ \Rightarrow x = \dfrac{{ - 1 \pm \sqrt {1 + 4(a + 2)(a + 1)} }}{2} \\\ \\\ _____________________________ eq 1.

let D2=1+4(a+2)(a+1){\text{let }}{D^2} = 1 + 4(a + 2)(a + 1)
On solving above equation, we get

D2=1+4a2+12a+8 D2=4a2+12a+9 D2=(2a+3)(2a+3) D2=(2a+3)2   \Rightarrow {D^2} = 1 + 4{a^2} + 12a + 8 \\\ \Rightarrow {D^2} = 4{a^2} + 12a + 9 \\\ \Rightarrow {D^2} = (2a + 3)(2a + 3) \\\ \Rightarrow {D^2} = {(2a + 3)^2} \\\ \\\

Now put the value of D2{D^2} in eq 1. We get

x=1±D22 x=1±(2a+3)2  \Rightarrow x = \dfrac{{ - 1 \pm \sqrt {{D^2}} }}{2} \\\ \Rightarrow x = \dfrac{{ - 1 \pm (2a + 3)}}{2} \\\

On Solving above equation separately for + sign we get

x=1+2a+32 x=2a+22 x=a+1   \Rightarrow x = \dfrac{{ - 1 + 2a + 3}}{2} \\\ \Rightarrow x = \dfrac{{2a + 2}}{2} \\\ \Rightarrow x = a + 1 \\\ \\\

Now for solving – sign , we get
x=1(2a+3)2 x=2a42 x=a2  \Rightarrow x = \dfrac{{ - 1 - (2a + 3)}}{2} \\\ \Rightarrow x = \dfrac{{ - 2a - 4}}{2} \\\ \Rightarrow x = - a - 2 \\\
Hence roots of given quadratic equation are
x=a+1 or x=(a+2)x = a + 1{\text{ or }}x = - (a + 2)

Note: Whenever you get this type of question the key concept of solving is you have to just compare this equation with the general form of the quadratic equation then put the values of a,b,c according to the quadratic equation in quadratic formula and then solve it to get the answer.