Solveeit Logo

Question

Question: Solve the given equation: \[\log 2\left( {{4}^{x+1}}+4 \right)\log 2\left( {{4}^{x}}+1 \right)={{\lo...

Solve the given equation: log2(4x+1+4)log2(4x+1)=log1218\log 2\left( {{4}^{x+1}}+4 \right)\log 2\left( {{4}^{x}}+1 \right)={{\log }_{\dfrac{1}{\sqrt{2}}}}\sqrt{\dfrac{1}{8}}

Explanation

Solution

Simplify the given equation using laws of exponents such as (ab)c=abc{{\left( {{a}^{b}} \right)}^{c}}={{a}^{bc}} and ab×ac=ab+c{{a}^{b}}\times {{a}^{c}}={{a}^{b+c}}. Also, use properties of log function such as log(xy)=logx+logy\log \left( xy \right)=\log x+\log y and logaab=b{{\log }_{a}}{{a}^{b}}=b to find the value of x which satisfies the given equation.

Complete step-by-step answer :
We have the equation log2(4x+1+4)log2(4x+1)=log1218\log 2\left( {{4}^{x+1}}+4 \right)\log 2\left( {{4}^{x}}+1 \right)={{\log }_{\dfrac{1}{\sqrt{2}}}}\sqrt{\dfrac{1}{8}}. We have to find the value of x which satisfies the given equation.
We will simplify the equation using properties of log function and laws of exponents.
We will firstly simplify the right side of the equation.
We can write 8 as 8=238={{2}^{3}}.
Thus, we have log1218=log12123=log12(12)3.....(1){{\log }_{\dfrac{1}{\sqrt{2}}}}\sqrt{\dfrac{1}{8}}={{\log }_{\dfrac{1}{\sqrt{2}}}}\sqrt{\dfrac{1}{{{2}^{3}}}}={{\log }_{\dfrac{1}{\sqrt{2}}}}{{\left( \dfrac{1}{\sqrt{2}} \right)}^{3}}.....\left( 1 \right).
We know that logaab=b{{\log }_{a}}{{a}^{b}}=b.
Substituting a=12,b=3a=\dfrac{1}{\sqrt{2}},b=3 in the above equation, we have log12(12)3=3.....(2){{\log }_{\dfrac{1}{\sqrt{2}}}}{{\left( \dfrac{1}{\sqrt{2}} \right)}^{3}}=3.....\left( 2 \right).
Substituting, equation (20 in equation (1), we have log1218=log12(12)3=3.....(3){{\log }_{\dfrac{1}{\sqrt{2}}}}\sqrt{\dfrac{1}{8}}={{\log }_{\dfrac{1}{\sqrt{2}}}}{{\left( \dfrac{1}{\sqrt{2}} \right)}^{3}}=3.....\left( 3 \right)
We will now simplify the left side of the equation log2(4x+1+4)log2(4x+1)=log1218\log 2\left( {{4}^{x+1}}+4 \right)\log 2\left( {{4}^{x}}+1 \right)={{\log }_{\dfrac{1}{\sqrt{2}}}}\sqrt{\dfrac{1}{8}}.
We can rewrite 4x+1+4{{4}^{x+1}}+4 as 4x+1+4=4x×4+4=4(4x+1){{4}^{x+1}}+4={{4}^{x}}\times 4+4=4\left( {{4}^{x}}+1 \right) using ab×ac=ab+c{{a}^{b}}\times {{a}^{c}}={{a}^{b+c}}.
Thus, we have log2(4x+1+4)=log2×4(4x+1)\log 2\left( {{4}^{x+1}}+4 \right)=\log 2\times 4\left( {{4}^{x}}+1 \right).
We know that 4=224={{2}^{2}} and logab=bloga\log {{a}^{b}}=b\log a.
Thus, we have log2(4x+1+4)=log2×22(4x+1)\log 2\left( {{4}^{x+1}}+4 \right)=\log 2\times {{2}^{2}}\left( {{4}^{x}}+1 \right).
We know that ab×ac=ab+c{{a}^{b}}\times {{a}^{c}}={{a}^{b+c}}.
Thus, we have log2(4x+1+4)=log23(4x+1)\log 2\left( {{4}^{x+1}}+4 \right)=\log {{2}^{3}}\left( {{4}^{x}}+1 \right).
We know that log(ab)=bloga\log \left( {{a}^{b}} \right)=b\log a.
Thus, we have log2(4x+1+4)=log2×4(4x+1)=3log2(4x+1)\log 2\left( {{4}^{x+1}}+4 \right)=\log 2\times 4\left( {{4}^{x}}+1 \right)=3\log 2\left( {{4}^{x}}+1 \right).
So, we have log2(4x+1+4)log2(4x+1)=3log2(4x+1)log2(4x+1)=3(log2(4x+1))2.....(4)\log 2\left( {{4}^{x+1}}+4 \right)\log 2\left( {{4}^{x}}+1 \right)=3\log 2\left( {{4}^{x}}+1 \right)\log 2\left( {{4}^{x}}+1 \right)=3{{\left( \log 2\left( {{4}^{x}}+1 \right) \right)}^{2}}.....\left( 4 \right).
We know that log2(4x+1+4)log2(4x+1)=log1218\log 2\left( {{4}^{x+1}}+4 \right)\log 2\left( {{4}^{x}}+1 \right)={{\log }_{\dfrac{1}{\sqrt{2}}}}\sqrt{\dfrac{1}{8}}.
Substituting equation (3) and (4) in the above equation, we have 3(log2(4x+1))2=33{{\left( \log 2\left( {{4}^{x}}+1 \right) \right)}^{2}}=3.
Rearranging the terms, we have (log2(4x+1))2=1{{\left( \log 2\left( {{4}^{x}}+1 \right) \right)}^{2}}=1.
Taking the square root on both sides, we have log2(4x+1)=±1\log 2\left( {{4}^{x}}+1 \right)=\pm 1.
We know that logx=y\log x=y can be written as x=eyx={{e}^{y}}.
Thus, we can rewrite log2(4x+1)=±1\log 2\left( {{4}^{x}}+1 \right)=\pm 1 as 2(4x+1)=e±12\left( {{4}^{x}}+1 \right)={{e}^{\pm 1}}.
Rearranging the terms, we have 4x+1=e±12{{4}^{x}}+1=\dfrac{{{e}^{\pm 1}}}{2}.
Thus, we have 4x=e±121{{4}^{x}}=\dfrac{{{e}^{\pm 1}}}{2}-1.
Taking log on both sides, we have log(4x)=log(e±121)=xlog4\log \left( {{4}^{x}} \right)=\log \left( \dfrac{{{e}^{\pm 1}}}{2}-1 \right)=x\log 4.
Rearranging the terms, we have x=log(e±121)log4x=\dfrac{\log \left( \dfrac{{{e}^{\pm 1}}}{2}-1 \right)}{\log 4}.
Hence, the value of x which satisfies the given equation is x=log(e±121)log4x=\dfrac{\log \left( \dfrac{{{e}^{\pm 1}}}{2}-1 \right)}{\log 4}.

Note :One must know about the laws of exponents and logarithmic properties. We can’t solve this question without using them. Also, the value of ‘x’ which satisfies the given equation is a real number.