Solveeit Logo

Question

Question: Solve the given equation \[\left( {x + y - 1} \right)dx + \left( {2x + 2y - 3} \right)dy = 0\]...

Solve the given equation (x+y1)dx+(2x+2y3)dy=0\left( {x + y - 1} \right)dx + \left( {2x + 2y - 3} \right)dy = 0

Explanation

Solution

Hint: This problem can be solved by using a substitution method. According to the substitution method, the given integral can be transformed into another form by changing the independent variable x to tx{\text{ to }}t. So, use this concept to reach the solution of the given problem.

Complete step-by-step answer:
Given equation is (x+y1)dx+(2x+2y3)dy=0\left( {x + y - 1} \right)dx + \left( {2x + 2y - 3} \right)dy = 0 which can be written as

(2x+2y3)dy=(x+y1)dx dydx=(x+y1)2x+2y3=(x+y)+12(x+y)3  \Rightarrow \left( {2x + 2y - 3} \right)dy = - \left( {x + y - 1} \right)dx \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - \left( {x + y - 1} \right)}}{{2x + 2y - 3}} = \dfrac{{ - \left( {x + y} \right) + 1}}{{2\left( {x + y} \right) - 3}} \\\

Put x+y=tx + y = t then, by differentiating it on both sides we have 1+dydx=dtdx1 + \dfrac{{dy}}{{dx}} = \dfrac{{dt}}{{dx}} i.e., dydx=dtdx1\dfrac{{dy}}{{dx}} = \dfrac{{dt}}{{dx}} - 1. So, we have

dtdx1=t+12t3 dtdx=1t2t3+1 dtdx=1t+2t32t3 dtdx=t22t3 (2t3t2)dt=dx  \dfrac{{dt}}{{dx}} - 1 = \dfrac{{ - t + 1}}{{2t - 3}} \\\ \dfrac{{dt}}{{dx}} = \dfrac{{1 - t}}{{2t - 3}} + 1 \\\ \dfrac{{dt}}{{dx}} = \dfrac{{1 - t + 2t - 3}}{{2t - 3}} \\\ \dfrac{{dt}}{{dx}} = \dfrac{{t - 2}}{{2t - 3}} \\\ \left( {\dfrac{{2t - 3}}{{t - 2}}} \right)dt = dx \\\

Adding and subtracting 1 on the numerator of right-hand side, we get

(2t4+1t2)dt=dx (2(t2)+1t2)dt=dx  \left( {\dfrac{{2t - 4 + 1}}{{t - 2}}} \right)dt = dx \\\ \left( {\dfrac{{2\left( {t - 2} \right) + 1}}{{t - 2}}} \right)dt = dx \\\

Splitting the terms, we have

(2(t2)t2+1t2)dt=dx 2dt+2t2dt=dx  \left( {\dfrac{{2\left( {t - 2} \right)}}{{t - 2}} + \dfrac{1}{{t - 2}}} \right)dt = dx \\\ 2dt + \dfrac{2}{{t - 2}}dt = dx \\\

Integrating on both sides, we get

2dt+dtt2=dx 2t+lnt2=x+c [1x=lnx+c]  \int {2dt + \int {\dfrac{{dt}}{{t - 2}} = \int {dx} } } \\\ 2t + \ln \left| {t - 2} \right| = x + c{\text{ }}\left[ {\because \int {\dfrac{1}{x} = \ln \left| x \right| + c} } \right] \\\

Substituting back t=x+yt = x + y, We get
2(x+y)+lnx+y2=x+c\therefore 2\left( {x + y} \right) + \ln \left| {x + y - 2} \right| = x + c
Thus, the solution of the equation (x+y1)dx+(2x+2y3)dy=0\left( {x + y - 1} \right)dx + \left( {2x + 2y - 3} \right)dy = 0 is 2(x+y)+lnx+y2=x+c2\left( {x + y} \right) + \ln \left| {x + y - 2} \right| = x + c.

Note: A constant namely integrating constant that is added to the function obtained by evaluating the indefinite integral of a given function, indicating that all indefinite integrals of the given function differ by, at most, a constant. So, it is necessary to add integrating constants after completion of the integral.