Solveeit Logo

Question

Question: Solve the given equation for x, sin2x – sin4x + sin6x = 0...

Solve the given equation for x, sin2x – sin4x + sin6x = 0

Explanation

Solution

Hint: First we use the formula sinC+sinD=2sin(C+D2)cos(CD2)\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right) , after that we will take out the common expression and find the general solutions of the two equations separately and that will be the final answer.

Complete step-by-step answer:
Let’s start solving the question,
sin2x – sin4x + sin6x = 0
Now using the formula sinC+sinD=2sin(C+D2)cos(CD2)\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right) in sin2x and sin6x we get,
sin2x+sin6x=2sin(2x+6x2)cos(6x2x2)\sin 2x+\sin 6x=2\sin \left( \dfrac{2x+6x}{2} \right)\cos \left( \dfrac{6x-2x}{2} \right)
sin2x + sin6x = 2(sin4x)(cos2x)
Now using the above value in sin2x – sin4x + sin6x = 0 we get,
2sin4xcos2xsin4x=0 sin4x(2cos2x1)=0 \begin{aligned} & 2\sin 4x\cos 2x-\sin 4x=0 \\\ & \sin 4x\left( 2\cos 2x-1 \right)=0 \\\ \end{aligned}
From this we can see that the there are two equations,
sin4x = 0 and 2cos2x – 1 = 0
Let’s first solve sin4x = 0,
We know that sin0 = 0,
Hence, sin4x = sin0
Now, if we have sinθ=sinα\sin \theta =\sin \alpha then the general solution is:
θ=nπ+(1)nα\theta =n\pi +{{\left( -1 \right)}^{n}}\alpha
Now using the above formula for sin4x = sin0 we get,
4x=nπ+(1)n0 x=nπ4............(1) \begin{aligned} & 4x=n\pi +{{\left( -1 \right)}^{n}}0 \\\ & x=\dfrac{n\pi }{4}............(1) \\\ \end{aligned}
Here n = integer.
Now we will find the general solution of 2cos2x – 1 = 0
cos2x=12 cos2x=cosπ3 \begin{aligned} & \cos 2x=\dfrac{1}{2} \\\ & \cos 2x=\cos \dfrac{\pi }{3} \\\ \end{aligned}
Now we will use the formula for general solution of cos,
Now, if we have cosθ=cosα\cos \theta =\cos \alpha then the general solution is:
θ=2nπ±α\theta =2n\pi \pm \alpha
Now using the above formula for 2cos2x – 1 = 0 we get,
2x=2nπ±π3 x=nπ±π6............(2) \begin{aligned} & 2x=2n\pi \pm \dfrac{\pi }{3} \\\ & x=n\pi \pm \dfrac{\pi }{6}............(2) \\\ \end{aligned}
Here n = integer.
Now from equation (1) and (2) we can say that the answer is,
x=nπ4 or x=nπ±π6x=\dfrac{n\pi }{4}\text{ or }x=n\pi \pm \dfrac{\pi }{6}
Hence, this is the answer to this question.

Note: The trigonometric formula sinC+sinD=2sin(C+D2)cos(CD2)\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right) that we have used must be kept in mind. One can also take some different value of α\alpha in both the equations like in case of sin we can take π\pi instead of 0, and then can apply the same formula for the general solution, and the answer that we get will also be correct.