Solveeit Logo

Question

Question: Solve the given equation \(\cos x\cos 2x\cos 3x{\text{ = }}\dfrac{1}{4}\)....

Solve the given equation cosxcos2xcos3x = 14\cos x\cos 2x\cos 3x{\text{ = }}\dfrac{1}{4}.

Explanation

Solution

The equation given in the question can be solved by using the some standard formulas like cos(A+B)+cos(AB)=2cosAcosB\cos (A + B) + \cos (A - B) = 2\cos A\cos B and cos2A=cos2Asin2A\cos 2A = {\cos ^2}A - {\sin ^2}A . On re-arranging the given equation and then using these formulas gives the required result. cos\cos is positive in first and fourth quadrants (i.e., cos(2nπ±θ)\cos (2n\pi \pm \theta )is always positive) &\& negative in second and third quadrants (i.e.,cos((2n+1)π±θ)\cos ((2n + 1)\pi \pm \theta ) is always negative).

Formulas Used:
cos(A+B)+cos(AB)=2cosAcosB\cos (A + B) + \cos (A - B) = 2\cos A\cos B
cos2A=cos2Asin2A\cos 2A = {\cos ^2}A - {\sin ^2}A

Complete step-by-step answer:
Given that cosxcos2xcos3x=14\cos x\cos 2x\cos 3x = \dfrac{1}{4}
On re-arranging the given equation we get the following equation
(2cos3xcosx)(2cos2x)=1(2\cos 3x\cos x)(2\cos 2x) = 1 (1) \cdot \cdot \cdot \cdot \cdot (1)
We know that 2cosAcosB=cos(A+B)+cos(AB)2\cos A\cos B = \cos (A + B) + \cos (A - B)
Therefore, 2cos3xcosx=cos(3x+x)+cos(3xx)2\cos 3x\cos x = \cos (3x + x) + \cos (3x - x)
=cos4x+cos2x= \cos 4x + \cos 2x (2) \cdot \cdot \cdot \cdot \cdot (2)
On substituting Equation (2)(2) in Equation (1)(1)
We get the following equation
(cos4x+cos2x)(2cos2x)=1(\cos 4x + \cos 2x)(2\cos 2x) = 1
On simplification we get the following equation
2cos2xcos4x+2cos22x=12\cos 2x\cos 4x + 2{\cos ^2}2x = 1
On further simplification we get the following equation
2cos2xcos4x+(2cos22x1)=02\cos 2x\cos 4x + (2{\cos ^2}2x - 1) = 0 (3) \cdot \cdot \cdot \cdot \cdot (3)
We know that cos2A=cos2Asin2A\cos 2A = {\cos ^2}A - {\sin ^2}A
We also know that sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1
On substituting sin2x=1cos2x{\sin ^2}x = 1 - {\cos ^2}x we get
cos2A=cos2A(1cos2A)\cos 2A = {\cos ^2}A - (1 - {\cos ^2}A)
cos2A=2cos2A1\cos 2A = 2{\cos ^2}A - 1
Therefore, 2cos22x1=cos4x2{\cos ^2}2x - 1 = \cos 4x (4) \cdot \cdot \cdot \cdot \cdot (4)
On substituting Equation (4)(4) in Equation (3)(3)
We get the following equation
2cos2xcos4x+cos4x=02\cos 2x\cos 4x + \cos 4x = 0
On rearranging the equation we get the following equation
cos4x(2cos2x+1)=0\cos 4x(2\cos 2x + 1) = 0
In order to satisfy the above equation either anyone or both of the two terms should be equal to zero i.e.,
cos4x=0\cos 4x = 0 Or 2cos2x+1=02\cos 2x + 1 = 0
For cos4x=0\cos 4x = 0
For cos4x\cos 4x should be 00 the value of 4x4x should be an odd multiple of π2\dfrac{\pi }{2} .
cos4x=cos(2n+1)π2   \cos 4x = \cos \dfrac{{(2n + 1)\pi }}{2} \\\ \\\
4x=(2n+1)π24x = \dfrac{{(2n + 1)\pi }}{2}
x=(2n+1)π8x = \dfrac{{(2n + 1)\pi }}{8} , for all n(,)n \in ( - \infty ,\infty )
For 2cos2x+1=02\cos 2x + 1 = 0
cos2x=12\cos 2x = \dfrac{{ - 1}}{2}
For cos2x\cos 2x should be equal to 12\dfrac{{ - 1}}{2} the value of 2x2x should be either in Second or Third quadrant
Therefore, cos2x=cos((2n+1)π±π3)\cos 2x = \cos ((2n + 1)\pi \pm \dfrac{\pi }{3})
2x=(2n+1)π±π32x = (2n + 1)\pi \pm \dfrac{\pi }{3}
x=(2n+1)π2±π6x = (2n + 1)\dfrac{\pi }{2} \pm \dfrac{\pi }{6} , for all n(,)n \in ( - \infty ,\infty )
Therefore, we get x=(2n+1)π8x = (2n + 1)\dfrac{\pi }{8} , for all n(,)n \in ( - \infty ,\infty ) and x=(2n+1)π2±π6x = (2n + 1)\dfrac{\pi }{2} \pm \dfrac{\pi }{6} , for all n(,)n \in ( - \infty ,\infty )

Note: For cos2x=12\cos 2x = \dfrac{{ - 1}}{2} i.e., for cos2x\cos 2x to be negative 2x2x should be either in Second quadrant or Third quadrant since cos\cos is negative in that quadrants. And for cos4x=0\cos 4x = 0 the value ofcos\cos to be 00 the value to 4x4x should be an odd multiple of π2\dfrac{\pi }{2} . It is important to know the nature of cos\cos in all four quadrants to get the required result. The above solution for cos2x=12\cos 2x = \dfrac{{ - 1}}{2} can also be taken as 2x=2nπ±2π32x = 2n\pi \pm \dfrac{{2\pi }}{3} i.e., x=nπ±π3x = n\pi \pm \dfrac{\pi }{3} , for all n(,)n \in ( - \infty ,\infty ) .