Solveeit Logo

Question

Question: Solve the given differentiation \(\dfrac{d}{{dx}}\left( {\dfrac{x}{{\sin x}}} \right)\) a)\({\tex...

Solve the given differentiation ddx(xsinx)\dfrac{d}{{dx}}\left( {\dfrac{x}{{\sin x}}} \right)
a)csc x(1+xcotx){\text{csc }}x\left( {1 + x\cot x} \right)
b)csc x(xcotx1){\text{csc }}x\left( {x\cot x - 1} \right)
c)csc x(1xcotx){\text{csc }}x\left( {1 - x\cot x} \right)
d)csc x(1+cosx){\text{csc }}x\left( {1 + \cos x} \right)

Explanation

Solution

We can use quotient rule to solve this differentiation which is given as-
ddx[f(x)g(x)]=g(x)f(x)f(x)g(x)g2(x)\Rightarrow \dfrac{d}{{dx}}\left[ {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right] = \dfrac{{g\left( x \right)f'\left( x \right) - f\left( x \right)g'\left( x \right)}}{{{g^2}\left( x \right)}}
Where f(x)f\left( x \right) and g(x)g\left( x \right) are functions of x and f(x)f'\left( x \right) is first order derivative of functionf(x)f\left( x \right) while g(x)g'\left( x \right) is first order derivative of g(x)g\left( x \right).Then use the formula1sinx=cscx\dfrac{1}{{\sin x}} = \csc x and cosxsinx=cotx\dfrac{{\cos x}}{{\sin x}} = \cot x and simplify the equation.

Complete step-by-step answer:
We have to differentiate ddx(xsinx)\dfrac{d}{{dx}}\left( {\dfrac{x}{{\sin x}}} \right)
So we will use the formula-
ddx[f(x)g(x)]=g(x)f(x)f(x)g(x)g2(x)\Rightarrow \dfrac{d}{{dx}}\left[ {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right] = \dfrac{{g\left( x \right)f'\left( x \right) - f\left( x \right)g'\left( x \right)}}{{{g^2}\left( x \right)}}
Assume here f(x)=xf\left( x \right) = x and g(x)=sinxg\left( x \right) = \sin x then on using the formula we get,
ddx[xsinx]=sinxdxdxxd(sinx)dxsin2x\Rightarrow \dfrac{d}{{dx}}\left[ {\dfrac{x}{{\sin x}}} \right] = \dfrac{{\sin x\dfrac{{dx}}{{dx}} - x\dfrac{{d\left( {\sin x} \right)}}{{dx}}}}{{{{\sin }^2}x}}
Where f(x)f\left( x \right) and g(x)g\left( x \right) are functions of x and f(x)f'\left( x \right) is first order derivative of functionf(x)f\left( x \right) while g(x)g'\left( x \right) is first order derivative of g(x)g\left( x \right)
Now we know that dsinxdx=cosx\dfrac{{d\sin x}}{{dx}} = \cos x and differentiation of x is 11
So on using these formulas we get,
ddx[xsinx]=sinxxcosxsin2x\Rightarrow \dfrac{d}{{dx}}\left[ {\dfrac{x}{{\sin x}}} \right] = \dfrac{{\sin x - x\cos x}}{{{{\sin }^2}x}}
On separating the terms we get,
ddx[xsinx]=sinxsin2xxcosxsin2x\Rightarrow \dfrac{d}{{dx}}\left[ {\dfrac{x}{{\sin x}}} \right] = \dfrac{{\sin x}}{{{{\sin }^2}x}} - \dfrac{{x\cos x}}{{{{\sin }^2}x}}
On solving further we get,
ddx[xsinx]=1sinxxcosxsin2x\Rightarrow \dfrac{d}{{dx}}\left[ {\dfrac{x}{{\sin x}}} \right] = \dfrac{1}{{\sin x}} - \dfrac{{x\cos x}}{{{{\sin }^2}x}}
And we know that 1sinx=cscx\dfrac{1}{{\sin x}} = \csc x
So we can write,
ddx[xsinx]=cscxxcosxsin2x\Rightarrow \dfrac{d}{{dx}}\left[ {\dfrac{x}{{\sin x}}} \right] = \csc x - \dfrac{{x\cos x}}{{{{\sin }^2}x}}
Now we can also write the second term as-
ddx[xsinx]=cscxxsinx.cosxsinx\Rightarrow \dfrac{d}{{dx}}\left[ {\dfrac{x}{{\sin x}}} \right] = \csc x - \dfrac{x}{{\sin x}}.\dfrac{{\cos x}}{{\sin x}}
And we know that 1sinx=cscx\dfrac{1}{{\sin x}} = \csc x and cosxsinx=cotx\dfrac{{\cos x}}{{\sin x}} = \cot x
So on putting these values in the equation we get,
ddx[xsinx]=cscxxcscx.cotx\Rightarrow \dfrac{d}{{dx}}\left[ {\dfrac{x}{{\sin x}}} \right] = \csc x - x\csc x.\cot x
Now here we see that cscx\csc x is a common term so we take it common from the equation and we get,
ddx[xsinx]=cscx(1xcotx)\Rightarrow \dfrac{d}{{dx}}\left[ {\dfrac{x}{{\sin x}}} \right] = \csc x\left( {1 - x\cot x} \right)
Hence the correct answer is C.

Note: We can also solve the given question this way-
Given, ddx(xsinx)\dfrac{d}{{dx}}\left( {\dfrac{x}{{\sin x}}} \right)
We know that1sinx=cscx\dfrac{1}{{\sin x}} = \csc x so we can write –
\Rightarrow ddx(xcscx)\dfrac{d}{{dx}}\left( {x\csc x} \right)
Now on using chain rule we get,
cscxddxx+xddx(cscx)\Rightarrow \csc x\dfrac{d}{{dx}}x + x\dfrac{d}{{dx}}\left( {\csc x} \right)
And we know that,d(cscx)dx=cscxcotx\dfrac{{d(\csc x)}}{{dx}} = - \csc x\cot x and we know the differentiation of x is one.
So on using this formula we get,
cscx+x(cscxcotx)\Rightarrow \csc x + x\left( { - \csc x\cot x} \right)
On simplifying we get,
cscxxcscxcotx\Rightarrow \csc x - x\csc x\cot x
Now here we see that cscx\csc x is a common term so we take it common from the equation and we get,
ddx[xsinx]=cscx(1xcotx)\Rightarrow \dfrac{d}{{dx}}\left[ {\dfrac{x}{{\sin x}}} \right] = \csc x\left( {1 - x\cot x} \right)
Hence we get the same answer by using this method.