Solveeit Logo

Question

Question: Solve the given complex function: \(\dfrac{\left( \cos x+i\sin x \right)\left( \cos y+i\sin y \ri...

Solve the given complex function:
(cosx+isinx)(cosy+isiny)(cotu+i)(1+itanv)\dfrac{\left( \cos x+i\sin x \right)\left( \cos y+i\sin y \right)}{\left( \cot u+i \right)\left( 1+i\tan v \right)}
A). sinucosvsinu\cos v
B). \sin u\cos v\left\\{ \cos \left( x+y-u-v \right)+i\sin \left( x+y-u-v \right) \right\\}
C). \sin u\cos v\left\\{ \cos \left( x+y-u-v \right)-i\sin \left( x+y-u-v \right) \right\\}
D). None of these

Explanation

Solution

Hint: In the given expression “i” is an iota in a complex number. Multiplication of numerator will yieldcos(x+y)+isin(x+y)\cos \left( x+y \right)+i\sin \left( x+y \right)and the denominator will yieldcos(u+v)+isin(u+v)sinucosv\dfrac{\cos \left( u+v \right)+i\sin \left( u+v \right)}{\sin u\cos v}. Now, divide the numerator over the denominator and hence, we have got the answer.

Complete step-by-step solution -
The expression given in the question that we need to solve is:
(cosx+isinx)(cosy+isiny)(cotu+i)(1+itanv)\dfrac{\left( \cos x+i\sin x \right)\left( \cos y+i\sin y \right)}{\left( \cot u+i \right)\left( 1+i\tan v \right)}
In the following, we are going to solve the numerator and denominator separately.
Solving numerator of the given expression we get,
(cosx+isinx)(cosy+isiny) =cosxcosy+(i)2sinxsiny+i(cosxsiny+sinxcosy) \begin{aligned} & \left( \cos x+i\sin x \right)\left( \cos y+i\sin y \right) \\\ & =\cos x\cos y+{{\left( i \right)}^{2}}\sin x\sin y+i\left( \cos x\sin y+\sin x\cos y \right) \\\ \end{aligned}
From the complex number, we know thati2=1{{i}^{2}}=-1and then substituting in the above expression we get,
cosxcosysinxsiny+i(cosxsiny+sinxcosy)\cos x\cos y-\sin x\sin y+i\left( \cos x\sin y+\sin x\cos y \right)
From the trigonometric identities, we know thatcos(x+y)=cosxcosysinxsiny\cos \left( x+y \right)=\cos x\cos y-\sin x\sin yandsin(x+y)=sinxcosy+cosxsiny\sin \left( x+y \right)=\sin x\cos y+\cos x\sin y. Substituting these values in the above expression we get,
cos(x+y)+isin(x+y)\cos \left( x+y \right)+i\sin \left( x+y \right)
From the above simplification, the numerator is reduced tocos(x+y)+isin(x+y)\cos \left( x+y \right)+i\sin \left( x+y \right).
Now, solving the denominator of the expression given in the question we get,
(cotu+i)(1+itanv) =cotu+(i)2tanv+i(1+cotutanv) \begin{aligned} & \left( \cot u+i \right)\left( 1+i\tan v \right) \\\ & =\cot u+{{\left( i \right)}^{2}}\tan v+i\left( 1+\cot u\tan v \right) \\\ \end{aligned}
From the complex number, we know thati2=1{{i}^{2}}=-1and then substituting in the above expression we get,
cotutanv+i(1+cotutanv)\cot u-\tan v+i\left( 1+\cot u\tan v \right)
In the above expression, we can writecotu=cosusinu\cot u=\dfrac{\cos u}{\sin u}andtanv=sinvcosv\tan v=\dfrac{\sin v}{\cos v}then simplify the above expression.
cosusinusinvcosv+i(1+cosusinu(sinvcosv)) =cosucosvsinusinv+i(sinucosv+cosusinv)sinucosv \begin{aligned} & \dfrac{\cos u}{\sin u}-\dfrac{\sin v}{\cos v}+i\left( 1+\dfrac{\cos u}{\sin u}\left( \dfrac{\sin v}{\cos v} \right) \right) \\\ & =\dfrac{\cos u\cos v-\sin u\sin v+i\left( \sin u\cos v+\cos u\sin v \right)}{\sin u\cos v} \\\ \end{aligned}
From the trigonometric identities, we know thatcos(u+v)=cosucosvsinusinv\cos \left( u+v \right)=\cos u\cos v-\sin u\sin vandsin(u+v)=sinucosv+cosusinv\sin \left( u+v \right)=\sin u\cos v+\cos u\sin v. Substituting these values in the above expression we get,
cos(u+v)+isin(u+v)sinucosv\dfrac{\cos \left( u+v \right)+i\sin \left( u+v \right)}{\sin u\cos v}
From the above simplification, the denominator is reduced tocos(u+v)+isin(u+v)sinucosv\dfrac{\cos \left( u+v \right)+i\sin \left( u+v \right)}{\sin u\cos v}.
Plugging these reduced values of numerator and denominator of the given expression we get,
cos(x+y)+isin(x+y)cos(u+v)+isin(u+v)sinucosv =sinucosv(cos(x+y)+isin(x+y))cos(u+v)+isin(u+v) \begin{aligned} & \dfrac{\cos \left( x+y \right)+i\sin \left( x+y \right)}{\dfrac{\cos \left( u+v \right)+i\sin \left( u+v \right)}{\sin u\cos v}} \\\ & =\dfrac{\sin u\cos v\left( \cos \left( x+y \right)+i\sin \left( x+y \right) \right)}{\cos \left( u+v \right)+i\sin \left( u+v \right)} \\\ \end{aligned}
Now, multiplying and dividing the above expression bycos(u+v)isin(u+v)\cos \left( u+v \right)-i\sin \left( u+v \right)we get,
sinucosv(cos(x+y)+isin(x+y))cos(u+v)+isin(u+v)×cos(u+v)isin(u+v)cos(u+v)isin(u+v)\dfrac{\sin u\cos v\left( \cos \left( x+y \right)+i\sin \left( x+y \right) \right)}{\cos \left( u+v \right)+i\sin \left( u+v \right)}\times \dfrac{\cos \left( u+v \right)-i\sin \left( u+v \right)}{\cos \left( u+v \right)-i\sin \left( u+v \right)}
=sinucosv(cos(x+y)+isin(x+y))(cos(u+v)isin(u+v))cos2(u+v)+sin2(u+v)=\dfrac{\sin u\cos v\left( \cos \left( x+y \right)+i\sin \left( x+y \right) \right)\left( \cos \left( u+v \right)-i\sin \left( u+v \right) \right)}{{{\cos }^{2}}\left( u+v \right)+{{\sin }^{2}}\left( u+v \right)}
From the trigonometric identities, we know thatcos2(u+v)+sin2(u+v)=1{{\cos }^{2}}\left( u+v \right)+{{\sin }^{2}}\left( u+v \right)=1so using this relation in the above expression we get,
\begin{aligned} & =\dfrac{\sin u\cos v\left( \cos \left( x+y \right)+i\sin \left( x+y \right) \right)\left( \cos \left( u+v \right)-i\sin \left( u+v \right) \right)}{1} \\\ & =\sin u\cos v\left( \cos \left( x+y \right)\cos \left( u+v \right)+\sin \left( x+y \right)\sin \left( u+v \right)+i\left( \sin \left( x+y \right)\cos \left( u+v \right)-\cos \left( x+y \right)\sin \left( u+v \right) \right) \right) \\\ & =\sin u\cos v\left\\{ \cos \left( x+y-u-v \right)+i\sin \left( x+y-u-v \right) \right\\} \\\ \end{aligned}From the above simplification, the given expression is resolved to:
\sin u\cos v\left\\{ \cos \left( x+y-u-v \right)+i\sin \left( x+y-u-v \right) \right\\}
Hence, the correct option is (b).

Note: The other way of solving the above problem is as follows:
First of all we are going to solve the denominator of the given expression in the form ofcosθ+isinθ\cos \theta +i\sin \theta :
(cotu+i)(1+itanv) =cotu+(i)2tanv+i(1+cotutanv) \begin{aligned} & \left( \cot u+i \right)\left( 1+i\tan v \right) \\\ & =\cot u+{{\left( i \right)}^{2}}\tan v+i\left( 1+\cot u\tan v \right) \\\ \end{aligned}
From the complex number, we know thati2=1{{i}^{2}}=-1and then substituting in the above expression we get,
cotutanv+i(1+cotutanv)\cot u-\tan v+i\left( 1+\cot u\tan v \right)
In the above expression, we can writecotu=cosusinu\cot u=\dfrac{\cos u}{\sin u}andtanv=sinvcosv\tan v=\dfrac{\sin v}{\cos v}then simplify the above expression.
cosusinusinvcosv+i(1+cosusinu(sinvcosv)) =cosucosvsinusinv+i(sinucosv+cosusinv)sinucosv \begin{aligned} & \dfrac{\cos u}{\sin u}-\dfrac{\sin v}{\cos v}+i\left( 1+\dfrac{\cos u}{\sin u}\left( \dfrac{\sin v}{\cos v} \right) \right) \\\ & =\dfrac{\cos u\cos v-\sin u\sin v+i\left( \sin u\cos v+\cos u\sin v \right)}{\sin u\cos v} \\\ \end{aligned}
From the trigonometric identities, we know thatcos(u+v)=cosucosvsinusinv\cos \left( u+v \right)=\cos u\cos v-\sin u\sin vandsin(u+v)=sinucosv+cosusinv\sin \left( u+v \right)=\sin u\cos v+\cos u\sin v. Substituting these values in the above expression we get,
cos(u+v)+isin(u+v)sinucosv\dfrac{\cos \left( u+v \right)+i\sin \left( u+v \right)}{\sin u\cos v}
From the above simplification, the denominator is reduced tocos(u+v)+isin(u+v)sinucosv\dfrac{\cos \left( u+v \right)+i\sin \left( u+v \right)}{\sin u\cos v}.
Now, writing the above expression in place of the denominator in(cosx+isinx)(cosy+isiny)(cotu+i)(1+itanv)\dfrac{\left( \cos x+i\sin x \right)\left( \cos y+i\sin y \right)}{\left( \cot u+i \right)\left( 1+i\tan v \right)}.
(cosx+isinx)(cosy+isiny)cos(u+v)+isin(u+v)sinucosv =sinucosv(cosx+isinx)(cosy+isiny)cos(u+v)+isin(u+v) \begin{aligned} & \dfrac{\left( \cos x+i\sin x \right)\left( \cos y+i\sin y \right)}{\dfrac{\cos \left( u+v \right)+i\sin \left( u+v \right)}{\sin u\cos v}} \\\ & =\dfrac{\sin u\cos v\left( \cos x+i\sin x \right)\left( \cos y+i\sin y \right)}{\cos \left( u+v \right)+i\sin \left( u+v \right)} \\\ \end{aligned}
We know that the Euler form of the complex number isz=cosθ+isinθz=\cos \theta +i\sin \theta or z=eiθz={{e}^{i\theta }}so we can write the above expression as:
cosx+isinx=eix cosy+isiny=eiy cos(u+v)+isin(u+v)=ei(u+v) \begin{aligned} & \cos x+i\sin x={{e}^{ix}} \\\ & \cos y+i\sin y={{e}^{iy}} \\\ & \cos \left( u+v \right)+i\sin \left( u+v \right)={{e}^{i\left( u+v \right)}} \\\ \end{aligned}
Now, plugging the above values in sinucosv(cosx+isinx)(cosy+isiny)cos(u+v)+isin(u+v)\dfrac{\sin u\cos v\left( \cos x+i\sin x \right)\left( \cos y+i\sin y \right)}{\cos \left( u+v \right)+i\sin \left( u+v \right)} we get,
sinucosveix(eiy)ei(u+v) =sinucosvei(x+y)ei(u+v) =sinucosvei(x+yuv) \begin{aligned} & \dfrac{\sin u\cos v{{e}^{ix}}\left( {{e}^{iy}} \right)}{{{e}^{i\left( u+v \right)}}} \\\ & =\dfrac{\sin u\cos v{{e}^{i\left( x+y \right)}}}{{{e}^{i\left( u+v \right)}}} \\\ & =\sin u\cos v {{e}^{i\left( x+y-u-v \right)}} \\\ \end{aligned}
In the above calculation, we have used the property that if base is same in multiplication then the powers are added like eix(eiy)=ei(x+y){{e}^{ix}}\left( {{e}^{iy}} \right)={{e}^{i\left( x+y \right)}} and we have also used the property that if base is same in division then powers got subtracted like ei(x+y)ei(u+v)=ei(x+yuv)\dfrac{{{e}^{i\left( x+y \right)}}}{{{e}^{i\left( u+v \right)}}}={{e}^{i\left( x+y-u-v \right)}}.
Now, using Euler form we can write ei(x+yuv)=cos(x+yuv)+isin(x+yuv){{e}^{i\left( x+y-u-v \right)}}=\cos \left( x+y-u-v \right)+i\sin \left( x+y-u-v \right)in the above expression we get,
\sin u\cos v\left\\{ \cos \left( x+y-u-v \right)+i\sin \left( x+y-u-v \right) \right\\}
Hence, we have got the same answer as we have obtained above.