Question
Question: Solve the given complex function: \(\dfrac{\left( \cos x+i\sin x \right)\left( \cos y+i\sin y \ri...
Solve the given complex function:
(cotu+i)(1+itanv)(cosx+isinx)(cosy+isiny)
A). sinucosv
B). \sin u\cos v\left\\{ \cos \left( x+y-u-v \right)+i\sin \left( x+y-u-v \right) \right\\}
C). \sin u\cos v\left\\{ \cos \left( x+y-u-v \right)-i\sin \left( x+y-u-v \right) \right\\}
D). None of these
Solution
Hint: In the given expression “i” is an iota in a complex number. Multiplication of numerator will yieldcos(x+y)+isin(x+y)and the denominator will yieldsinucosvcos(u+v)+isin(u+v). Now, divide the numerator over the denominator and hence, we have got the answer.
Complete step-by-step solution -
The expression given in the question that we need to solve is:
(cotu+i)(1+itanv)(cosx+isinx)(cosy+isiny)
In the following, we are going to solve the numerator and denominator separately.
Solving numerator of the given expression we get,
(cosx+isinx)(cosy+isiny)=cosxcosy+(i)2sinxsiny+i(cosxsiny+sinxcosy)
From the complex number, we know thati2=−1and then substituting in the above expression we get,
cosxcosy−sinxsiny+i(cosxsiny+sinxcosy)
From the trigonometric identities, we know thatcos(x+y)=cosxcosy−sinxsinyandsin(x+y)=sinxcosy+cosxsiny. Substituting these values in the above expression we get,
cos(x+y)+isin(x+y)
From the above simplification, the numerator is reduced tocos(x+y)+isin(x+y).
Now, solving the denominator of the expression given in the question we get,
(cotu+i)(1+itanv)=cotu+(i)2tanv+i(1+cotutanv)
From the complex number, we know thati2=−1and then substituting in the above expression we get,
cotu−tanv+i(1+cotutanv)
In the above expression, we can writecotu=sinucosuandtanv=cosvsinvthen simplify the above expression.
sinucosu−cosvsinv+i(1+sinucosu(cosvsinv))=sinucosvcosucosv−sinusinv+i(sinucosv+cosusinv)
From the trigonometric identities, we know thatcos(u+v)=cosucosv−sinusinvandsin(u+v)=sinucosv+cosusinv. Substituting these values in the above expression we get,
sinucosvcos(u+v)+isin(u+v)
From the above simplification, the denominator is reduced tosinucosvcos(u+v)+isin(u+v).
Plugging these reduced values of numerator and denominator of the given expression we get,
sinucosvcos(u+v)+isin(u+v)cos(x+y)+isin(x+y)=cos(u+v)+isin(u+v)sinucosv(cos(x+y)+isin(x+y))
Now, multiplying and dividing the above expression bycos(u+v)−isin(u+v)we get,
cos(u+v)+isin(u+v)sinucosv(cos(x+y)+isin(x+y))×cos(u+v)−isin(u+v)cos(u+v)−isin(u+v)
=cos2(u+v)+sin2(u+v)sinucosv(cos(x+y)+isin(x+y))(cos(u+v)−isin(u+v))
From the trigonometric identities, we know thatcos2(u+v)+sin2(u+v)=1so using this relation in the above expression we get,
\begin{aligned}
& =\dfrac{\sin u\cos v\left( \cos \left( x+y \right)+i\sin \left( x+y \right) \right)\left( \cos \left( u+v \right)-i\sin \left( u+v \right) \right)}{1} \\\
& =\sin u\cos v\left( \cos \left( x+y \right)\cos \left( u+v \right)+\sin \left( x+y \right)\sin \left( u+v \right)+i\left( \sin \left( x+y \right)\cos \left( u+v \right)-\cos \left( x+y \right)\sin \left( u+v \right) \right) \right) \\\
& =\sin u\cos v\left\\{ \cos \left( x+y-u-v \right)+i\sin \left( x+y-u-v \right) \right\\} \\\
\end{aligned}From the above simplification, the given expression is resolved to:
\sin u\cos v\left\\{ \cos \left( x+y-u-v \right)+i\sin \left( x+y-u-v \right) \right\\}
Hence, the correct option is (b).
Note: The other way of solving the above problem is as follows:
First of all we are going to solve the denominator of the given expression in the form ofcosθ+isinθ:
(cotu+i)(1+itanv)=cotu+(i)2tanv+i(1+cotutanv)
From the complex number, we know thati2=−1and then substituting in the above expression we get,
cotu−tanv+i(1+cotutanv)
In the above expression, we can writecotu=sinucosuandtanv=cosvsinvthen simplify the above expression.
sinucosu−cosvsinv+i(1+sinucosu(cosvsinv))=sinucosvcosucosv−sinusinv+i(sinucosv+cosusinv)
From the trigonometric identities, we know thatcos(u+v)=cosucosv−sinusinvandsin(u+v)=sinucosv+cosusinv. Substituting these values in the above expression we get,
sinucosvcos(u+v)+isin(u+v)
From the above simplification, the denominator is reduced tosinucosvcos(u+v)+isin(u+v).
Now, writing the above expression in place of the denominator in(cotu+i)(1+itanv)(cosx+isinx)(cosy+isiny).
sinucosvcos(u+v)+isin(u+v)(cosx+isinx)(cosy+isiny)=cos(u+v)+isin(u+v)sinucosv(cosx+isinx)(cosy+isiny)
We know that the Euler form of the complex number isz=cosθ+isinθor z=eiθso we can write the above expression as:
cosx+isinx=eixcosy+isiny=eiycos(u+v)+isin(u+v)=ei(u+v)
Now, plugging the above values in cos(u+v)+isin(u+v)sinucosv(cosx+isinx)(cosy+isiny) we get,
ei(u+v)sinucosveix(eiy)=ei(u+v)sinucosvei(x+y)=sinucosvei(x+y−u−v)
In the above calculation, we have used the property that if base is same in multiplication then the powers are added like eix(eiy)=ei(x+y) and we have also used the property that if base is same in division then powers got subtracted like ei(u+v)ei(x+y)=ei(x+y−u−v).
Now, using Euler form we can write ei(x+y−u−v)=cos(x+y−u−v)+isin(x+y−u−v)in the above expression we get,
\sin u\cos v\left\\{ \cos \left( x+y-u-v \right)+i\sin \left( x+y-u-v \right) \right\\}
Hence, we have got the same answer as we have obtained above.