Solveeit Logo

Question

Question: Solve the following trigonometric expression \[\sin \theta + \sin 2\theta + \sin 3\theta + \sin 4...

Solve the following trigonometric expression
sinθ+sin2θ+sin3θ+sin4θ=0\sin \theta + \sin 2\theta + \sin 3\theta + \sin 4\theta = 0.

Explanation

Solution

Hint: In the questions where angles are given in terms of θ\theta , we need to find out the formulas that can be used to solve these. After simplifying the giving equation use the properties of sinθ and cosθ and then proceed further.

Complete step-by-step answer:

(sin4x+sinx)+(sin3x+sin2x)=0(\sin 4x + \sin x) + (\sin 3x + \sin 2x) = 0

Using the formula
sinα+sinβ=2sin(α+β2)cos(αβ2)\sin \alpha + \sin \beta = 2\sin \left( {\dfrac{{\alpha + \beta }}{2}} \right)\cos \left( {\dfrac{{\alpha - \beta }}{2}} \right)

So,2sin(4x+x2)cos(4xx2)+2sin(3x+2x2)cos(3x2x2)=02\sin \left( {\dfrac{{4x + x}}{2}} \right)\cos \left( {\dfrac{{4x - x}}{2}} \right) + 2\sin \left( {\dfrac{{3x + 2x}}{2}} \right)\cos \left( {\dfrac{{3x - 2x}}{2}} \right) = 0
2sin(52x)cos(32x)+2sin(52x)cos(12x)=0\Rightarrow 2\sin \left( {\dfrac{5}{2}x} \right)\cos \left( {\dfrac{3}{2}x} \right) + 2\sin \left( {\dfrac{5}{2}x} \right)\cos \left( {\dfrac{1}{2}x} \right) = 0
2sin(52x)[cos(32x)+cos(12x)]=0\Rightarrow 2\sin \left( {\dfrac{5}{2}x} \right)\left[ {\cos \left( {\dfrac{3}{2}x} \right) + \cos \left( {\dfrac{1}{2}x} \right)} \right] = 0

Now using
cosα+cosβ=2cos(α+β2)cos(αβ2)\cos \alpha + \cos \beta = 2\cos \left( {\dfrac{{\alpha + \beta }}{2}} \right)\cos \left( {\dfrac{{\alpha - \beta }}{2}} \right) we get
2sin(52x)2cos(32x+12x2)cos(32x12x2)=0\Rightarrow 2\sin \left( {\dfrac{5}{2}x} \right)2\cos \left( {\dfrac{{\dfrac{3}{2}x + \dfrac{1}{2}x}}{2}} \right)\cos \left( {\dfrac{{\dfrac{3}{2}x - \dfrac{1}{2}x}}{2}} \right) = 0
4sin(52x)cosxcos(x2)=0\Rightarrow 4\sin \left( {\dfrac{5}{2}x} \right)\cos x\cos \left( {\dfrac{x}{2}} \right) = 0

Then:
sin(52x)=052x=Kπ\Rightarrow \sin \left( {\dfrac{5}{2}x} \right) = 0 \Rightarrow \dfrac{5}{2}x = K\pi
x=25kπ\Rightarrow x = \dfrac{2}{5}k\pi

Similarly,
cosx=0x=π2+kπ\Rightarrow \cos x = 0 \Rightarrow x = \dfrac{\pi }{2} + k\pi
cos(x2)=0\cos \left( {\dfrac{x}{2}} \right) = 0
x2=π2+kπ\Rightarrow \dfrac{x}{2} = \dfrac{\pi }{2} + k\pi
x=π+2kπ\Rightarrow x = \pi + 2k\pi

Note: Following are the properties of sinθ and cosθ. While solving using these formulas don’t be confused with - and + signs (Major mistakes are made by this confusion). A good command over trigonometric identities and formulas will be an added advantage.

sinα+sinβ=2sin(α+β2)cos(αβ2) cosα+cosβ=2cos(α+β2)cos(αβ2) sinαsinβ=2cos(α+β2)sin(αβ2) cosαcosβ=2sin(α+β2)sin(αβ2)  \sin \alpha + \sin \beta = 2\sin \left( {\dfrac{{\alpha + \beta }}{2}} \right)\cos \left( {\dfrac{{\alpha - \beta }}{2}} \right) \\\ \cos \alpha + \cos \beta = 2\cos \left( {\dfrac{{\alpha + \beta }}{2}} \right)\cos \left( {\dfrac{{\alpha - \beta }}{2}} \right) \\\ \sin \alpha - \sin \beta = 2\cos \left( {\dfrac{{\alpha + \beta }}{2}} \right)\sin \left( {\dfrac{{\alpha - \beta }}{2}} \right) \\\ \cos \alpha - \cos \beta = - 2\sin \left( {\dfrac{{\alpha + \beta }}{2}} \right)\sin \left( {\dfrac{{\alpha - \beta }}{2}} \right) \\\