Solveeit Logo

Question

Question: Solve the following system of linear equations by Cramer’s rule x + y = 0, y + z = 1 and z + x = 3...

Solve the following system of linear equations by Cramer’s rule
x + y = 0, y + z = 1 and z + x = 3.

Explanation

Solution

To solve this question firstly we will write the system of linear equations in determinant form. Then, we will find the determinantsD1{{D}_{1}}, D2{{D}_{2}} andD3{{D}_{3}}. And then using formula x=DD1x=\dfrac{D}{{{D}_{1}}} , y=DD2y=\dfrac{D}{{{D}_{2}}} and z=DD3z=\dfrac{D}{{{D}_{3}}}, we will evaluate the variables x, y and z.

Complete step by step answer:
Now , if we want to calculate the determinant of matrix A of order 3×33\times 3, then determinant of matrix A of 3×33\times 3 is evaluated as,
a11a12a13 a21a22a23 a31a32a33 =a11(a22a33a32a23)a21(a12a33a32a13)+a31(a23a12a22a13)\left| \begin{matrix} {{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\\ {{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\\ {{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\\ \end{matrix} \right|={{a}_{11}}({{a}_{22}}{{a}_{33}}-{{a}_{32}}{{a}_{23}})-{{a}_{21}}({{a}_{12}}{{a}_{33}}-{{a}_{32}}{{a}_{13}})+{{a}_{31}}({{a}_{23}}{{a}_{12}}-{{a}_{22}}{{a}_{13}})
Also, we know that if we have linear equation as, px + qy + rz = u, lx + my + nz = v and ax + by + cz = w, then we can represent coefficients of system of linear equation in determinant as D=pqr lmn abc D=\left| \begin{matrix} p & q & r \\\ l & m & n \\\ a & b & c \\\ \end{matrix} \right|
Then in Cramer’s rule, we find three more determinants as D1=uqr vmn wbc {{D}_{1}}=\left| \begin{matrix} u & q & r \\\ v & m & n \\\ w & b & c \\\ \end{matrix} \right|, D2=pur lvn awc {{D}_{2}}=\left| \begin{matrix} p & u & r \\\ l & v & n \\\ a & w & c \\\ \end{matrix} \right| and D3=pqu lmv abw {{D}_{3}}=\left| \begin{matrix} p & q & u \\\ l & m & v \\\ a & b & w \\\ \end{matrix} \right| and we evaluate x=DD1x=\dfrac{D}{{{D}_{1}}} , y=DD2y=\dfrac{D}{{{D}_{2}}} and z=DD3z=\dfrac{D}{{{D}_{3}}}.

Now, we can re – write the system of linear equations as,
x + y + 0.z = 0,
0.x + y + z = 1,
x + 0.y + z = 3 and in determinant form as
D=110 011 101 D=\left| \begin{matrix} 1 & 1 & 0 \\\ 0 & 1 & 1 \\\ 1 & 0 & 1 \\\ \end{matrix} \right|
Expanding determinant along R1{{R}_{1}}, we get
D=1(1)1(1)+0D=1(1)-1(-1)+0
\Rightarrow D = 2
Now, D1=010 111 301 {{D}_{1}}=\left| \begin{matrix} 0 & 1 & 0 \\\ 1 & 1 & 1 \\\ 3 & 0 & 1 \\\ \end{matrix} \right|
Expanding determinant along R1{{R}_{1}}, we get
D1=01(13)+0{{D}_{1}}=0-1(1-3)+0
D1=2\Rightarrow {{D}_{1}}=2
Now, D2=100 011 131 {{D}_{2}}=\left| \begin{matrix} 1 & 0 & 0 \\\ 0 & 1 & 1 \\\ 1 & 3 & 1 \\\ \end{matrix} \right|
Expanding determinant along R1{{R}_{1}}, we get
D2=1(13)0+0{{D}_{2}}=1(1-3)-0+0
D2=2\Rightarrow {{D}_{2}}=-2
Now, D3=110 011 103 {{D}_{3}}=\left| \begin{matrix} 1 & 1 & 0 \\\ 0 & 1 & 1 \\\ 1 & 0 & 3 \\\ \end{matrix} \right|
Expanding determinant along R1{{R}_{1}}, we get
D3=1(31)1+0{{D}_{3}}=1(3-1)-1+0
D3=1\Rightarrow {{D}_{3}}=1
So, we know that according to Cramer’s rule
x=DD1x=\dfrac{D}{{{D}_{1}}} , y=DD2y=\dfrac{D}{{{D}_{2}}} and z=DD3z=\dfrac{D}{{{D}_{3}}}.
So, x=22x=\dfrac{2}{2},y=22y=\dfrac{2}{-2} and z=21z=\dfrac{2}{1}
We get, x = 1, y = -1 and z = 2.

Note: To solve this question, one must know how we expand the determinants and also one must know the concept of Cramer’s rule. Also, this rule works for any number of variable linear equations. While solving determinant and evaluating the values of variable x, y and z try not to make any calculation mistakes as this may give you wrong values of variables.