Question
Mathematics Question on Applications of Determinants and Matrices
Solve the following system of equations x−y+z=4, x−2y+2z=9 and 2x+y+3z=1.
x=−4, y=−3, z=2
x=−1, y=−3, z−2
x=2, y=4, z=6
x=3, y=6 , z=9
x=−1, y=−3, z−2
Solution
Given system of equations is x−y+z=4, x−2y+2z=9 and 2x+y+3z=1, which is written in the matrix form as 1 1 2−1−21123x y z=4 9 1 or AX=B where, A=1 1 2−1−21123,B=4 9 1andX=x y z Now, ∣A∣=1 1 2−1−21123=1(−6−2)+1(3−4)+1(1+4)=−8−1+5=−4=0 ∴ A is invertible So, there exists a unique solution X=A−1B. Now, cofactor matrix of A=−8 4 011−15−3−1 ∴adjA=−8 4 011−15−3−1T=−8 1 541−30−1−1 So, A−1=∣A∣1(adjA)=4−1−8 1 541−30−1−1 Now, X=A−1B=4−1−8 1 541−30−1−14 9 1 ⇒x y z=4−1−32+36+0 4+9−1 20−27−1=4−14 12 −8=−1 −3 2 On comparing, we get x=−1, y=−3 and z=2