Solveeit Logo

Question

Mathematics Question on Applications of Determinants and Matrices

Solve the following system of equations xy+z=4x - y + z = 4, x2y+2z=9x -2 y + 2z = 9 and 2x+y+3z=12x + y + 3z = 1.

A

x=4x = -4, y=3y = -3, z=2z = 2

B

x=1x = - 1, y=3y = -3, z2z - 2

C

x=2x=2, y=4y=4, z=6z=6

D

x=3x = 3, y=6y = 6 , z=9z = 9

Answer

x=1x = - 1, y=3y = -3, z2z - 2

Explanation

Solution

Given system of equations is xy+z=4x - y + z = 4, x2y+2z=9x - 2y + 2z =9 and 2x+y+3z=12x + y + 3z = 1, which is written in the matrix form as [111 122 213][x y z]=[4 9 1]\left[\begin{matrix}1&-1&1\\\ 1&-2&2\\\ 2&1&3\end{matrix}\right]\left[\begin{matrix}x\\\ y\\\ z\end{matrix}\right]=\left[\begin{matrix}4\\\ 9\\\ 1\end{matrix}\right] or AX=BAX = B where, A=[111 122 213],B=[4 9 1]andX=[x y z]A =\left[\begin{matrix}1&-1&1\\\ 1&-2&2\\\ 2&1&3\end{matrix}\right], B=\left[\begin{matrix}4\\\ 9\\\ 1\end{matrix}\right] and X=\left[\begin{matrix}x\\\ y\\\ z\end{matrix}\right] Now, A=111 122 213=1(62)+1(34)+1(1+4)=81+5=40|A| = \left|\begin{matrix}1&-1&1\\\ 1&-2&2\\\ 2&1&3\end{matrix}\right|=1\left(-6-2\right)+1\left(3-4\right)+1\left(1+4\right)=-8-1+5=-4 \ne0 \therefore\quad A is invertible So, there exists a unique solution X=A1BX = A^{-1}B. Now, cofactor matrix of A=[815 413 011]A =\left[\begin{matrix}-8&1&5\\\ 4&1&-3\\\ 0&-1&-1\end{matrix}\right] adjA=[815 413 011]T=[840 111 531]\therefore\quad adj A =\left[\begin{matrix}-8&1&5\\\ 4&1&-3\\\ 0&-1&-1\end{matrix}\right]^{T}=\left[\begin{matrix}-8&4&0\\\ 1&1&-1\\\ 5&-3&-1\end{matrix}\right] So, A1=1A(adjA)=14[840 111 531]A^{-1}=\frac{1}{\left|A\right|} \left(adj A\right)=\frac{-1}{4} \left[\begin{matrix}-8&4&0\\\ 1&1&-1\\\ 5&-3&-1\end{matrix}\right] Now, X=A1B=14[840 111 531][4 9 1]X=A^{-1}B=\frac{-1}{4} \left[\begin{matrix}-8&4&0\\\ 1&1&-1\\\ 5&-3&-1\end{matrix}\right]\left[\begin{matrix}4\\\ 9\\\ 1\end{matrix}\right] [x y z]=14[32+36+0 4+91 20271]=14[4 12 8]=[1 3 2]\Rightarrow\quad\left[\begin{matrix}x\\\ y\\\ z\end{matrix}\right]=\frac{-1}{4} \left[\begin{matrix}-32+36+0\\\ 4+9-1\\\ 20-27-1\end{matrix}\right]=\frac{-1}{4}\left[\begin{matrix}4\\\ 12\\\ -8\end{matrix}\right]=\left[\begin{matrix}-1\\\ -3\\\ 2\end{matrix}\right] On comparing, we get x=1x = -1, y=3y = -3 and z=2z = 2