Solveeit Logo

Question

Question: Solve the following: \(\sin \left( {40} \right) + \cos \left( {50} \right) + \sin \left( {80} \rig...

Solve the following:
sin(40)+cos(50)+sin(80)cos(190)=?\sin \left( {40} \right) + \cos \left( {50} \right) + \sin \left( {80} \right) - \cos \left( {190} \right) = ?

Explanation

Solution

To do this question you should have good knowledge of trigonometric formulas. Formulas are the base of trigonometry. In this question we should use the formula of sinC+sinD=2sinC+D2cosCD2\sin C + \sin D = 2\sin \dfrac{{C + D}}{2}\cos \dfrac{{C - D}}{2}, cos(90θ)=sinθ\cos \left( {90 - \theta } \right) = \sin \theta and cos(270θ)=sin(θ)\cos (270 - \theta ) = - \sin \left( \theta \right).

Complete step by step answer:
In the above question, we have
sin(40)+cos(50)+sin(80)cos(190)\Rightarrow \sin \left( {40} \right) + \cos \left( {50} \right) + \sin \left( {80} \right) - \cos \left( {190} \right)
We can also write cos(50)=cos(9040)\cos \left( {50} \right) = \cos \left( {90 - 40} \right) and cos(190)=cos(27080)\cos \left( {190} \right) = \cos \left( {270 - 80} \right).
Now,
sin(40)+cos(9040)+sin(80)cos(27080)\Rightarrow \sin \left( {40} \right) + \cos \left( {90 - 40} \right) + \sin \left( {80} \right) - \cos \left( {270 - 80} \right)
We know that cos(90θ)=sinθ\cos \left( {90 - \theta } \right) = \sin \theta and also cos(270θ)=sin(θ)\cos (270 - \theta ) = - \sin \left( \theta \right).
sin(40)+sin(40)+sin(80)+sin(80)\Rightarrow \sin \left( {40} \right) + \sin \left( {40} \right) + \sin \left( {80} \right) + \sin \left( {80} \right)
Now we will add the terms having the same angle of sine function.
2sin(40)+2sin(80)\Rightarrow 2\sin \left( {40} \right) + 2\sin \left( {80} \right)
Taking two common out from the equation
2(sin(40)+sin(80))\Rightarrow 2\left( {\sin \left( {40} \right) + \sin \left( {80} \right)} \right)
Now we will use the identity sinC+sinD=2sinC+D2cosCD2\sin C + \sin D = 2\sin \dfrac{{C + D}}{2}\cos \dfrac{{C - D}}{2} in the above equation.
2(2sin80+402cos80402)\Rightarrow 2\left( {2\sin \dfrac{{80 + 40}}{2}\cos \dfrac{{80 - 40}}{2}} \right)
2(2sin1202cos402)\Rightarrow 2\left( {2\sin \dfrac{{120}}{2}\cos \dfrac{{40}}{2}} \right)
4sin60cos20\Rightarrow 4\sin 60\cos 20
On simplification, we get
23cos(20)\Rightarrow 2\sqrt 3 \cos \left( {20} \right)
Therefore, the value of sin(40)+cos(50)+sin(80)cos(190)=23cos(20)\sin \left( {40} \right) + \cos \left( {50} \right) + \sin \left( {80} \right) - \cos \left( {190} \right) = \,2\sqrt 3 \cos \left( {20} \right).

Note:
There is one more method to answer this question. in that method we will write cos(190)=cos(180+10)\cos \left( {190} \right) = \cos \left( {180 + 10} \right) and on further calculation we will write it as cos(10)=cos(9080)\cos \left( {10} \right) = \cos \left( {90 - 80} \right) and it will convert into sine function and then we will get to the final result which will also in the form of sine function.