Solveeit Logo

Question

Question: Solve the following quadratic equation by factorization method: \(4{{x}^{2}}-4{{a}^{2}}x+{{a}^{4}}-{...

Solve the following quadratic equation by factorization method: 4x24a2x+a4b4=04{{x}^{2}}-4{{a}^{2}}x+{{a}^{4}}-{{b}^{4}}=0

Explanation

Solution

To solve this question we need to have the knowledge of quadratic equations. In this question we need to apply formulas for factoring the expression. The formula used to solve this will bex2y2=(xy)(x+y){{x}^{2}}-{{y}^{2}}=\left( x-y \right)\left( x+y \right) . We will also take common values and factorize the expression accordingly.

Complete step-by-step solution:
The question ask us to find the value of xx in the expression 4x24a2x+a4b4=04{{x}^{2}}-4{{a}^{2}}x+{{a}^{4}}-{{b}^{4}}=0using factorization method. We will expand the middle term in such a way that we get the common values for the calculation. The middle term will be expanded as:
4x22[(a2+b2)+(a2b2)]x+(a2b2)(a2+b2)=0\Rightarrow 4{{x}^{2}}-2[({{a}^{2}}+{{b}^{2}})+({{a}^{2}}-{{b}^{2}})]x+({{a}^{2}}-{{b}^{2}})({{a}^{2}}+{{b}^{2}})=0
Since we know that the product of positive and negative is negative while that of negative and negative is positive and positive and positive is positive. Applying the same in the above equation we get:
4x22(a2+b2)x2(a2b2)x+(a2b2)(a2+b2)=0\Rightarrow 4{{x}^{2}}-2({{a}^{2}}+{{b}^{2}})x-2({{a}^{2}}-{{b}^{2}})x+({{a}^{2}}-{{b}^{2}})({{a}^{2}}+{{b}^{2}})=0
We will take common 2x2x and will factorize further:

2x(2x(a2+b2))(a2b2)(2x(a2+b2))=0\Rightarrow 2x(2x-({{a}^{2}}+{{b}^{2}}))-({{a}^{2}}-{{b}^{2}})(2x-({{a}^{2}}+{{b}^{2}}))=0

From the above term we can take (2x(a2+b2))(2x-({{a}^{2}}+{{b}^{2}})) common. On doing this we get:

(2x(a2+b2))(2x(a2b2))=0\Rightarrow (2x-({{a}^{2}}+{{b}^{2}}))(2x-({{a}^{2}}-{{b}^{2}}))=0
In the second term in the above expression we will take 44 as common, hence resulting to:
(2x(a2+b2))(2x(a2b2))=0\Rightarrow (2x-({{a}^{2}}+{{b}^{2}}))(2x-({{a}^{2}}-{{b}^{2}}))=0
We will now individually find the value for xx from the above expression.
(2x(a2+b2))=0\Rightarrow (2x-({{a}^{2}}+{{b}^{2}}))=0
x=a2+b22\Rightarrow x=\dfrac{{{a}^{2}}+{{b}^{2}}}{2}
The value of xxfor the another term will be:
(2x(a2b2))=0\Rightarrow (2x-({{a}^{2}}-{{b}^{2}}))=0
x=a2b22\Rightarrow x=\dfrac{{{a}^{2}}-{{b}^{2}}}{2}
So the two values of xx are a2+b22\dfrac{{{a}^{2}}+{{b}^{2}}}{2} and a2b22.\dfrac{{{a}^{2}}-{{b}^{2}}}{2}.
\therefore The values for xx for the following quadratic equation by factorization method: 4x24a2x+a4b4=04{{x}^{2}}-4{{a}^{2}}x+{{a}^{4}}-{{b}^{4}}=0 are a2+b22\dfrac{{{a}^{2}}+{{b}^{2}}}{2} and a2b22.\dfrac{{{a}^{2}}-{{b}^{2}}}{2}.

Note: We can check whether the answer we got is correct or not. To check this we will put the value of xx which are a2+b2{{a}^{2}}+{{b}^{2}} and in the equation (x(a2+b22))(x(a2b22))(x-(\dfrac{{{a}^{2}}+{{b}^{2}}}{2}))(x-(\dfrac{{{a}^{2}}-{{b}^{2}}}{2})). If the equation results in zero this means the answer is correct. On checking we get:
(x(a2+b22))(x(a2b22))\Rightarrow (x-(\dfrac{{{a}^{2}}+{{b}^{2}}}{2}))(x-(\dfrac{{{a}^{2}}-{{b}^{2}}}{2}))
Putting a2+b22\dfrac{{{a}^{2}}+{{b}^{2}}}{2}in place of xx:
(a2+b22(a2+b22))(a2+b22(a2b22))\Rightarrow \left( \dfrac{{{a}^{2}}+{{b}^{2}}}{2}-\left( \dfrac{{{a}^{2}}+{{b}^{2}}}{2} \right) \right)\left( \dfrac{{{a}^{2}}+{{b}^{2}}}{2}-\left( \dfrac{{{a}^{2}}-{{b}^{2}}}{2} \right) \right)
(a2+b2a2b22)(a2+b2a2+b22)\Rightarrow \left( \dfrac{{{a}^{2}}+{{b}^{2}}-{{a}^{2}}-{{b}^{2}}}{2} \right)\left( \dfrac{{{a}^{2}}+{{b}^{2}}-{{a}^{2}}+{{b}^{2}}}{2} \right)
0(b2)=0\Rightarrow 0({{b}^{2}})=0
Similarly on putting a2b22\dfrac{{{a}^{2}}-{{b}^{2}}}{2}in the equation we get zero. So the answer is correct.