Solveeit Logo

Question

Mathematics Question on Algebraic Methods of Solving a Pair of Linear Equations

Solve the following pair of linear equations by the substitution method.
(i) x + y = 14
x – y = 4

(ii) s – t = 3
s3+t2\frac{s}{3} + \frac{t}{2} =6

(iii) 3x – y = 3
9x – 3y = 9

(iv) 0.2x + 0.3y = 1.3
0.4x + 0.5y = 2.3

(v)2x\sqrt2x + 3y\sqrt3y=0
3x\sqrt3x - 8y\sqrt8y = 0

(vi) 3x25y3\frac{3x}{2} - \frac{5y}{3} =-2,
x3+y2\frac{ x}{3} + \frac{y}{2} = 136\frac{ 13}{6}

Answer

(i) x + y = 14 ……………………..(1)
x − y = 4 ..…………………...(2)

From (1), we obtain
x = 14 − y .……………..........(3)

Substituting this value in equation (2), we obtain
(14-y) -y =4
14 -2y = 4
10=2y
y=5

Substituting this in equation (3), we obtain
x=9
∴ x=9, y=5


(ii) s-t =3 ..……………..(1)
s3+t2\frac{s}{3} + \frac{t}{2} =6 ……………….(2)

From (1), we obtain
s= t+3 ………..(3)

Substituting this value in equation (2), we obtain
t+33\frac{t+3}{3} + t2\frac{t}{2} =6
2t +6 +3t = 36
5t =30
t = 6
Substituting in equation (3), we obtain
s=9
∴s=9 , t=6


(iii) 3x − y = 3 ......................(1)
9x − 3y = 9 .....................(2)

From (1), we obtain
y = 3x − 3 ......................(3)

Substituting this value in equation (2), we obtain
9x -3 (3x-3) =9
9x -9x +9 =9
9 = 9

This is always true. Hence, the given pair of equations has infinite possible solutions and the relation between these variables can be given by y = 3x − 3

Therefore, one of its possible solutions is x = 1, y = 0.


(iv) 0.2x + 0.3y = 1.3 ........................(1)
0.4x + 0.5y = 2.3 ........................(2)

From equation (1), we obtain
x=1.30.3y0.2\frac{1.3-0.3y}{0.2} ........................(3)

Substituting this value in equation (2), we obtain
0.4(1.30.3y0.2\frac{1.3-0.3y}{0.2}) + 0.5 y = 2.3

2.6 -0.6y + 0.5 y =2.3
2.6 -2.3= 0.1y
03=0.1y
y=3

Substituting this value in equation (3), we obtain
x= 1.30.3×30.2\frac{1.3 -0.3 \times 3 }{ 0.2 }

= 1.30.90.2\frac{1.3 -0.9}{0.2} =0.40.2\frac{ 0.4}{0.2} =2

∴ x=2, y=3


**(v) **2x+3y\sqrt2x + \sqrt3y =0 .................(1)
3x8y\sqrt3x - \sqrt8y =0 .................(2)

from equation (1), we obtain
x= -3y2\frac{\sqrt3y}{\sqrt2} .....................(3)

Substituting this value in equation (2), we obtain
3(3y2)8y\sqrt3(\frac{-\sqrt3y}{\sqrt2}) -\sqrt8y=0

3y222y\frac{-3y}{\sqrt2} -2\sqrt2y =0

y(3y222y\frac{-3y}{\sqrt2} -2\sqrt2y) =0

y=0

Substituting this value in equation (3), we obtain
x = 0
∴ x = 0, y = 0


**(vi) **32x53y\frac{3}{2}x - \frac{5}{3}y = -2 ...............(1)
x3+y2\frac{x}{3} + \frac{y}{2 }=136\frac{13}{6} ................(2)

From equation (1), we obtain
9x-10y =12
x=12+10y9\frac{-12+10y}{9} ...............(3)

Substituting this value in equation (2), we obtain
12+10y93+y2\frac{-12+\frac{10y}{9}}{3} +\frac{y}{2} =136\frac{13}{6}

-12+10y27\frac{12+10y}{27 }+y2\frac{y}{2} = 136\frac{13}{6}

24+20y+27y54\frac{-24 +20y +27y}{54} = 136\frac{13}{6}

47y47y= 117+24117 + 24
47y47y =141141
yy = 33

Substituting this value in equation (3), we obtain
x= 12+10×39\frac{-12 +10 \times 3}{9 }= 189\frac{18}{9} =2

∴ x=2, y=3