Solveeit Logo

Question

Question: Solve the following inverse trigonometric equation equation: \(\cos \left( {{\tan }^{-1}}x \right)...

Solve the following inverse trigonometric equation equation:
cos(tan1x)=sin(cot134)\cos \left( {{\tan }^{-1}}x \right)=\sin \left( {{\cot }^{-1}}\dfrac{3}{4} \right)

Explanation

Solution

Hint: For solving this question first we will assume tan1x=α{{\tan }^{-1}}x=\alpha and cot134=β{{\cot }^{-1}}\dfrac{3}{4}=\beta . After that, we will try to transform the given equation cosα=sinβ\cos \alpha =\sin \beta in terms of tanα\tan \alpha and cotβ\cot \beta with the help of trigonometric formulas like tan2θ+1=sec2θ{{\tan }^{2}}\theta +1={{\sec }^{2}}\theta and cot2θ+1=csc2θ{{\cot }^{2}}\theta +1={{\csc }^{2}}\theta . Then, we will put tanα=x\tan \alpha =x and cotβ=34\cot \beta =\dfrac{3}{4} to solve further for the suitable values of xx .

Complete step-by-step solution -
Given:
We have to find the suitable values of xx from the following equation:
cos(tan1x)=sin(cot134)\cos \left( {{\tan }^{-1}}x \right)=\sin \left( {{\cot }^{-1}}\dfrac{3}{4} \right)
Now, let tan1x=α{{\tan }^{-1}}x=\alpha and cot134=β{{\cot }^{-1}}\dfrac{3}{4}=\beta . Then,
cos(tan1x)=sin(cot134) cosα=sinβ \begin{aligned} & \cos \left( {{\tan }^{-1}}x \right)=\sin \left( {{\cot }^{-1}}\dfrac{3}{4} \right) \\\ & \Rightarrow \cos \alpha =\sin \beta \\\ \end{aligned}
Now, we will square both terms in the above equation. Then,
cosα=sinβ cos2α=sin2β \begin{aligned} & \cos \alpha =\sin \beta \\\ & \Rightarrow {{\cos }^{2}}\alpha ={{\sin }^{2}}\beta \\\ \end{aligned}
Now, as we know that, cosα=1secα\cos \alpha =\dfrac{1}{\sec \alpha } and sinβ=1cscβ\sin \beta =\dfrac{1}{\csc \beta } . Then,
cos2α=sin2β 1sec2α=1csc2β csc2β=sec2α.....................(1) \begin{aligned} & {{\cos }^{2}}\alpha ={{\sin }^{2}}\beta \\\ & \Rightarrow \dfrac{1}{{{\sec }^{2}}\alpha }=\dfrac{1}{{{\csc }^{2}}\beta } \\\ & \Rightarrow {{\csc }^{2}}\beta ={{\sec }^{2}}\alpha .....................\left( 1 \right) \\\ \end{aligned}
Now, before we proceed we should know the following formulas:
tan2θ+1=sec2θ..................(2) cot2θ+1=csc2θ..................(3) \begin{aligned} & {{\tan }^{2}}\theta +1={{\sec }^{2}}\theta ..................\left( 2 \right) \\\ & {{\cot }^{2}}\theta +1={{\csc }^{2}}\theta ..................\left( 3 \right) \\\ \end{aligned}
Now, as per our assumption tan1x=α{{\tan }^{-1}}x=\alpha and cot134=β{{\cot }^{-1}}\dfrac{3}{4}=\beta . And we know that, tan(tan1x)=x\tan \left( {{\tan }^{-1}}x \right)=x and cot(cot1x)=x\cot \left( {{\cot }^{-1}}x \right)=x for any xRx\in R . Then,
tan1x=α tan(tan1x)=tanα x=tanα tanα=x............................(4) cot134=β cot(cot134)=cotβ 34=cotβ cotβ=34...........................(5) \begin{aligned} & {{\tan }^{-1}}x=\alpha \\\ & \Rightarrow \tan \left( {{\tan }^{-1}}x \right)=\tan \alpha \\\ & \Rightarrow x=\tan \alpha \\\ & \Rightarrow \tan \alpha =x............................\left( 4 \right) \\\ & {{\cot }^{-1}}\dfrac{3}{4}=\beta \\\ & \Rightarrow \cot \left( {{\cot }^{-1}}\dfrac{3}{4} \right)=\cot \beta \\\ & \Rightarrow \dfrac{3}{4}=\cot \beta \\\ & \Rightarrow \cot \beta =\dfrac{3}{4}...........................\left( 5 \right) \\\ \end{aligned}
Now, we will use the formula from the equation (2) to write sec2α=1+tan2α{{\sec }^{2}}\alpha =1+{{\tan }^{2}}\alpha in equation (1) and formula from equation (3) to write csc2β=cot2β+1{{\csc }^{2}}\beta ={{\cot }^{2}}\beta +1 in equation (1). Then,
csc2β=sec2α 1+cot2β=1+tan2α cot2β=tan2α \begin{aligned} & {{\csc }^{2}}\beta ={{\sec }^{2}}\alpha \\\ & \Rightarrow 1+{{\cot }^{2}}\beta =1+{{\tan }^{2}}\alpha \\\ & \Rightarrow {{\cot }^{2}}\beta ={{\tan }^{2}}\alpha \\\ \end{aligned}
Now, we will put tanα=x\tan \alpha =x from equation (4) and cotβ=34\cot \beta =\dfrac{3}{4} from equation (5) in the above equation. Then,
cot2β=tan2α (34)2=x2 x2=(34)2 x=±34 \begin{aligned} & {{\cot }^{2}}\beta ={{\tan }^{2}}\alpha \\\ & \Rightarrow {{\left( \dfrac{3}{4} \right)}^{2}}={{x}^{2}} \\\ & \Rightarrow {{x}^{2}}={{\left( \dfrac{3}{4} \right)}^{2}} \\\ & \Rightarrow x=\pm \dfrac{3}{4} \\\ \end{aligned}
Now, from the above result we conclude that, if cos(tan1x)=sin(cot134)\cos \left( {{\tan }^{-1}}x \right)=\sin \left( {{\cot }^{-1}}\dfrac{3}{4} \right) then, the value of xx will be equal to 34,34\dfrac{3}{4},-\dfrac{3}{4} . Then,
cos(tan1x)=sin(cot134) x=±34 \begin{aligned} & \cos \left( {{\tan }^{-1}}x \right)=\sin \left( {{\cot }^{-1}}\dfrac{3}{4} \right) \\\ & \Rightarrow x=\pm \dfrac{3}{4} \\\ \end{aligned}
Thus, suitable values of xx will be x=±34x=\pm \dfrac{3}{4} .

Note: Here, the student should first understand what is asked in the question, and then proceed in the right direction to get the correct answer quickly. After that, we should proceed in a stepwise manner in such questions and apply basic formulas of trigonometry for better clarity. And avoid calculation error while solving. Moreover, we could have directly calculated the value of cos(tan1x)\cos \left( {{\tan }^{-1}}x \right) by formula cos(tan1x)=11+x2\cos \left( {{\tan }^{-1}}x \right)=\dfrac{1}{\sqrt{1+{{x}^{2}}}} , where xRx\in R and value of sin(cot134)\sin \left( {{\cot }^{-1}}\dfrac{3}{4} \right) by formula sin(cot1x)=11+x2\sin \left( {{\cot }^{-1}}x \right)=\dfrac{1}{\sqrt{1+{{x}^{2}}}} , where xRx\in R .