Solveeit Logo

Question

Question: Solve the following integral \[\int {{{\sin }^{ - 1}}\left( {2x} \right)dx} \]....

Solve the following integral sin1(2x)dx\int {{{\sin }^{ - 1}}\left( {2x} \right)dx} .

Explanation

Solution

n this question we have to solve the given integral. In order to solve this question, first of all we will assume sin12x=t{\sin ^{ - 1}}2x = t . After that we will differentiate it and transfer the given integral in terms of tt . After that we will use the concept of integration by parts i.e., (uv)dx=uvdx(dudxvdx) dx\int {\left( {u \cdot v} \right)dx = u\int {vdx - \int {\left( {\dfrac{{du}}{{dx}}\int {vdx} } \right)} } } {\text{ }}dx where uu is the first function and vv is the second function, to solve the given integral. And finally, we will substitute the value of tt. Hence, we get the required result.

Complete step by step answer:
We have to solve the integral: sin1(2x)dx\int {{{\sin }^{ - 1}}\left( {2x} \right)dx}
Let us consider the given integral as,
I=sin1(2x)dx (i)I = \int {{{\sin }^{ - 1}}\left( {2x} \right)dx} {\text{ }} - - - \left( i \right)
Now let us assume
sin12x=t (ii){\sin ^{ - 1}}2x = t{\text{ }} - - - \left( {ii} \right)
Now we know that
If sin1x=a{\sin ^{ - 1}}x = a then x=sinax = \sin a
Therefore, from equation (ii)\left( {ii} \right) we have
2x=sint (iii)2x = \sin t{\text{ }} - - - \left( {iii} \right)
x=sint2 (iv)\Rightarrow x = \dfrac{{\sin t}}{2}{\text{ }} - - - \left( {iv} \right)
Now on differentiating equation (iv)\left( {iv} \right) with respect to xx we get
dx=cost2dtdx = \dfrac{{\cos t}}{2}dt
Now on substituting the values in the equation (i)\left( i \right) we get
I=tcost2dtI = \int {t \cdot \dfrac{{\cos t}}{2}dt}
I=12tcostdt (v)\Rightarrow I = \dfrac{1}{2}\int {t \cdot \cos tdt} {\text{ }} - - - \left( v \right)

Now using integration by parts,
We know that
(uv)dx=uvdx(dudxvdx) dx\int {\left( {u \cdot v} \right)dx = u\int {vdx - \int {\left( {\dfrac{{du}}{{dx}}\int {vdx} } \right)} } } {\text{ }}dx
From equation (v)\left( v \right) we have
u=tu = t and v=costv = \cos t
Therefore, we have
I=12(tcost)dt = 12[tcostdt(dtdtcostdt)dt]+cI = \dfrac{1}{2}\int {\left( {t \cdot \cos t} \right)dt{\text{ }} = {\text{ }}\dfrac{1}{2}\left[ {t\int {\cos tdt - \int {\left( {\dfrac{{dt}}{{dt}}\int {\cos tdt} } \right)} } dt} \right]} + c
I=12[tcostdt(dtdtcostdt)dt]+c (vi)\Rightarrow I = \dfrac{1}{2}\left[ {t\int {\cos tdt - \int {\left( {\dfrac{{dt}}{{dt}}\int {\cos tdt} } \right)} } dt} \right] + c{\text{ }} - - - \left( {vi} \right)

Now we know that
cost dt=sint\int {\cos t} {\text{ }}dt = \sin t
dtdt=1\dfrac{{dt}}{{dt}} = 1
Therefore, from the equation (vi)\left( {vi} \right) we get
I=12[tsint1sint dt]+c\Rightarrow I = \dfrac{1}{2}\left[ {t \cdot \sin t - \int {1 \cdot \sin t{\text{ }}dt} } \right] + c
I=12[tsintsint dt]+c\Rightarrow I = \dfrac{1}{2}\left[ {t \cdot \sin t - \int {\sin t{\text{ }}dt} } \right] + c
We know that
sint dt=cost\int {\sin t} {\text{ }}dt = - \cos t
Therefore, we get
I=12[tsint(cost)]+c\Rightarrow I = \dfrac{1}{2}\left[ {t \cdot \sin t - \left( { - \cos t} \right)} \right] + c
I=12[tsint+cost]+c\Rightarrow I = \dfrac{1}{2}\left[ {t \cdot \sin t + \cos t} \right] + c

Now back substituting the value from equation (ii)\left( {ii} \right) and equation (iii)\left( {iii} \right) we get
I=12[sin1(2x)2x+cost]+c (vii)\Rightarrow I = \dfrac{1}{2}\left[ {{{\sin }^{ - 1}}\left( {2x} \right) \cdot 2x + \cos t} \right] + c{\text{ }} - - - \left( {vii} \right)
As we know that
cosx=1sin2x\cos x = \sqrt {1 - {{\sin }^2}x}
Therefore, cost=1sin2t\cos t = \sqrt {1 - {{\sin }^2}t}
cost=14x2\Rightarrow \cos t = \sqrt {1 - 4{x^2}}
Therefore, from equation (vii)\left( {vii} \right) we get
I=12[sin1(2x)2x+14x2]+c \therefore I = \dfrac{1}{2}\left[ {{{\sin }^{ - 1}}\left( {2x} \right) \cdot 2x + \sqrt {1 - 4{x^2}} } \right] + c{\text{ }}

Hence, the value of the integral sin1(2x)dx\int {{{\sin }^{ - 1}}\left( {2x} \right)dx} is 12[sin1(2x)2x+14x2]+c \dfrac{1}{2}\left[ {{{\sin }^{ - 1}}\left( {2x} \right) \cdot 2x + \sqrt {1 - 4{x^2}} } \right] + c{\text{ }}.

Note: The given integral is an indefinite integral. So, always remember while calculating the indefinite integral never forget to add constant cc in the final result. Also remember you cannot choose the first and second functions in the formula of integration by parts as you like. Always choose them by using “ILATE” where
-II stands for Inverse trigonometric functions
-LL stands for logarithmic functions
-AA stands for Algebraic functions
-TT stands for Trigonometric functions
-EE stands for exponent function