Solveeit Logo

Question

Question: Solve the following \(\int{\sin 2x\cos 3x}dx\)...

Solve the following sin2xcos3xdx\int{\sin 2x\cos 3x}dx

Explanation

Solution

We need to find the integral of the function sin2xcos3x\sin 2x\cos 3x . We start to solve the question by multiplying and dividing the integral by 2. Then, we use the trigonometric formula 2sinAcosB=sin(A+B)+sin(AB)2\sin A\cos B=\sin \left( A+B \right)+\sin \left( A-B \right) to simplify the trigonometric function and integrate it to get the desired result.

Complete step by step solution:
Let II be the value of the integral for the given function.
I=sin2xcos3xdx\Rightarrow I=\int{\sin 2x\cos 3x}dx
We are given a function and need to integrate it. We solve this question using the trigonometric formulae to simplify the function and then find the value of II .
According to the question,
The integral of the function sin2xcos3x\sin 2x\cos 3x is written as follows,
I=sin2xcos3xdx\Rightarrow I=\int{\sin 2x\cos 3x}dx
We need to multiply and divide by 2.
Multiplying and dividing by 2 on the right-hand side of the equation, we get,
I=12×2sin2xcos3xdx\Rightarrow I=\dfrac{1}{2}\times 2\int{\sin 2x\cos 3x}dx
I=122sin2xcos3xdx\Rightarrow I=\dfrac{1}{2}\int{2\sin 2x\cos 3x}dx
The above trigonometric function is of the form 2sinAcosB2\sin A\cos B
From trigonometry,
We know that 2sinAcosB=sin(A+B)+sin(AB)2\sin A\cos B=\sin \left( A+B \right)+\sin \left( A-B \right) .
Here,
The values of AA and BB are given as follows,
A=2x;A=2x;
B=3xB=3x
Applying the above formula and substituting the values in the formula, we get,
I=12(sin(2x+3x)+sin(2x3x))dx\Rightarrow I=\dfrac{1}{2}\int{\left( \sin \left( 2x+3x \right)+\sin \left( 2x-3x \right) \right)dx}
Simplifying the value of the above equation, we get,
I=12(sin5x+sin(x))dx\Rightarrow I=\dfrac{1}{2}\int{\left( \sin 5x+\sin \left( -x \right) \right)dx}
From trigonometry,
We know that sinx\sin x is an odd function.
For any odd function,
f(x)=f(x)\Rightarrow f\left( x \right)=-f\left( x \right)
Applying the same for the sinx\sin x function, we get,
sin(x)=sinx\Rightarrow \sin \left( -x \right)=-\sin x
Substituting the same, we get,
I=12(sin5xsinx)dx\Rightarrow I=\dfrac{1}{2}\int{\left( \sin 5x-\sin x \right)dx}
Let us evaluate the above equation further,
I=12sin5xdx12sinxdx\Rightarrow I=\dfrac{1}{2}\int{\sin 5xdx}-\dfrac{1}{2}\int{\sin xdx}
From the formulae of integration,
sin5xdx=(cos5x)5\Rightarrow \int{\sin 5xdx=\dfrac{\left( -\cos 5x \right)}{5}}
sinxdx=(cosx)\Rightarrow \int{\sin xdx=\left( -\cos x \right)}
Substituting the values of integrals in the above equation, we get,
I=12(cos5x)512(cosx)\Rightarrow I=\dfrac{1}{2}\dfrac{\left( -\cos 5x \right)}{5}-\dfrac{1}{2}\left( -\cos x \right)
Simplifying the above equation, we get
I=(cos5x)10+cosx2\Rightarrow I=\dfrac{\left( -\cos 5x \right)}{10}+\dfrac{\cos x}{2}
I=12cosx110cos5x\Rightarrow I=\dfrac{1}{2}\cos x-\dfrac{1}{10}\cos 5x
Substituting the value of II in the above equation, we get,
sin2xcos3xdx=12cosx110cos5x\therefore \int{\sin 2x\cos 3xdx}=\dfrac{1}{2}\cos x-\dfrac{1}{10}\cos 5x

Note: One must always remember that the difference between the trigonometric functions sin5xsinx\sin 5x-\sin x is not equal to sin4x\sin 4x and it is solved using the formula sin(A+B)sin(AB)=2cosAsinB\sin \left( A+B \right)-\sin \left( A-B \right)=2\cos A\sin B from trigonometry.