Solveeit Logo

Question

Question: Solve the following: \[\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{dx}}{{5 + 4\cos x}}?} \]...

Solve the following: 0π2dx5+4cosx?\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{dx}}{{5 + 4\cos x}}?}

Explanation

Solution

In order to solve this integral, first of all, we will use the trigonometric half angle identity of cosx\cos x in terms of tanx\tan x i.e., cosx=1tan2x21+tan2x2\cos x = \dfrac{{1 - {{\tan }^2}\dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}} .After that we will assume tanx2=t\tan \dfrac{x}{2} = t and differentiate it and transfer the given integral in terms of tt .And then we will use the formula as, 1x2+a2dx=1atan1(xa)+c\int {\dfrac{1}{{{x^2} + {a^2}}}dx = \dfrac{1}{a}{{\tan }^{ - 1}}\left( {\dfrac{x}{a}} \right) + c} to solve the given integral. And finally, we will substitute the new limits to get the required result.

Complete step by step answer:
We have to solve: 0π2dx5+4cosx\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{dx}}{{5 + 4\cos x}}}
Let us consider the given integral as,
I=0π2dx5+4cosx (i)I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{dx}}{{5 + 4\cos x}}} {\text{ }} - - - \left( i \right)
Now we know that
cosx=1tan2x21+tan2x2\cos x = \dfrac{{1 - {{\tan }^2}\dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}}
Therefore equation (i)\left( i \right) becomes,
I=0π2dx5+4(1tan2x21+tan2x2) (A)I = \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{dx}}{{5 + 4\left( {\dfrac{{1 - {{\tan }^2}\dfrac{x}{2}}}{{1 + {{\tan }^2}\dfrac{x}{2}}}} \right)}}} {\text{ }} - - - \left( A \right)
Now let us assume
tanx2=t (ii)\tan \dfrac{x}{2} = t{\text{ }} - - - \left( {ii} \right)
As we know that
ddx(tanx)=sec2x\dfrac{d}{{dx}}\left( {\tan x} \right) = {\sec ^2}x
So, by differentiating both the sides of equation (ii)\left( {ii} \right) w.r.t xx we get
12sec2x2=dtdx\dfrac{1}{2}{\sec ^2}\dfrac{x}{2} = \dfrac{{dt}}{{dx}}
Now we know that
1+tan2x=sec2x1 + {\tan ^2}x = {\sec ^2}x
Therefore, we get
12(1+tan2x2)=dtdx\dfrac{1}{2}\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right) = \dfrac{{dt}}{{dx}}
On multiplying by dxdx both sides, we get
12(1+tan2x2)dx=dt\dfrac{1}{2}\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right)dx = dt
dx=dt12(1+tan2x2)\Rightarrow dx = \dfrac{{dt}}{{\dfrac{1}{2}\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right)}}
Now using equation (ii)\left( {ii} \right) we get
dx=dt12(1+t2)\Rightarrow dx = \dfrac{{dt}}{{\dfrac{1}{2}\left( {1 + {t^2}} \right)}}
dx=2dt(1+t2) (iii)\Rightarrow dx = \dfrac{{2dt}}{{\left( {1 + {t^2}} \right)}}{\text{ }} - - - \left( {iii} \right)
Now as we change the variable xx from tt we need to change the limits of xx to the limits of tt as well
So, when x=0x = 0
t=tan0=0\Rightarrow t = \tan 0 = 0
And when x=π2x = \dfrac{\pi }{2}
t=tan(π22)=tan(π4)=1\Rightarrow t = \tan \left( {\dfrac{{\dfrac{\pi }{2}}}{2}} \right) = \tan \left( {\dfrac{\pi }{4}} \right) = 1
Thus, we get the limits from 00 to 11
Now, substituting the values from equation (ii)\left( {ii} \right) and equation (iii)\left( {iii} \right) in equation (A)\left( A \right) with the new limits we get
I=012dt(1+t2)5+4(1t21+t2) I = \int\limits_0^1 {\dfrac{{\dfrac{{2dt}}{{\left( {1 + {t^2}} \right)}}}}{{5 + 4\left( {\dfrac{{1 - {t^2}}}{{1 + {t^2}}}} \right)}}} {\text{ }}
On taking L.C.M we get
I=012dt(1+t2)5(1+t2)+4(1t2)(1+t2) I = \int\limits_0^1 {\dfrac{{\dfrac{{2dt}}{{\left( {1 + {t^2}} \right)}}}}{{\dfrac{{5\left( {1 + {t^2}} \right) + 4\left( {1 - {t^2}} \right)}}{{\left( {1 + {t^2}} \right)}}}}} {\text{ }}
On cancelling (1+t2)\left( {1 + {t^2}} \right) we get
I=012dt5(1+t2)+4(1t2) I = \int\limits_0^1 {\dfrac{{2dt}}{{5\left( {1 + {t^2}} \right) + 4\left( {1 - {t^2}} \right)}}} {\text{ }}
On solving the denominator, we get
I=012dtt2+9 I = \int\limits_0^1 {\dfrac{{2dt}}{{{t^2} + 9}}} {\text{ }}
We know that
axdx=axdx\int {axdx} = a\int {xdx} where aa is constant
Therefore, we get
I=201dtt2+9 I = 2\int\limits_0^1 {\dfrac{{dt}}{{{t^2} + 9}}} {\text{ }}
I=201dtt2+32 \Rightarrow I = 2\int\limits_0^1 {\dfrac{{dt}}{{{t^2} + {3^2}}}} {\text{ }}
Now we know that
1x2+a2dx=1atan1(xa)+c\int {\dfrac{1}{{{x^2} + {a^2}}}dx = \dfrac{1}{a}{{\tan }^{ - 1}}\left( {\dfrac{x}{a}} \right) + c}
Therefore, we get
I=2[13tan1(t3)]01\Rightarrow I = 2\left[ {\dfrac{1}{3}{{\tan }^{ - 1}}\left( {\dfrac{t}{3}} \right)} \right]_0^1
Substituting the upper and lower limits, we get
I=2[13tan1(13)13tan1(03)]\Rightarrow I = 2\left[ {\dfrac{1}{3}{{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right) - \dfrac{1}{3}{{\tan }^{ - 1}}\left( {\dfrac{0}{3}} \right)} \right]
I=2[13tan1(13)13tan1(0)]\Rightarrow I = 2\left[ {\dfrac{1}{3}{{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right) - \dfrac{1}{3}{{\tan }^{ - 1}}\left( 0 \right)} \right]
We know that
tan1(0)=0{\tan ^{ - 1}}\left( 0 \right) = 0
Therefore, we get
I=2[13tan1(13)0]\Rightarrow I = 2\left[ {\dfrac{1}{3}{{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right) - 0} \right]
I=23tan1(13)\Rightarrow I = \dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{1}{3}} \right)
Hence, we get the value of 0π2dx5+4cosx\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{dx}}{{5 + 4\cos x}}} equals to 23tan1(13)\dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{1}{3}} \right)

Note:
In this question, many students solve the integral correctly but forget to change the limits. That is like in the above equation, they forget to transforms the limits 00 and π2\dfrac{\pi }{2} into 00 and 11 respectively and get the wrong answer even after doing the calculation correctly. So, this must be taken care of in the case of definite integrals.
Also note that the given integral is an example of a definite integral, so there is no need to add the constant term.