Question
Question: Solve the following: \[\int\limits_0^{\dfrac{\pi }{2}} {(2\log \sin x - \log \sin 2x)dx} \]...
Solve the following:
0∫2π(2logsinx−logsin2x)dx
Solution
If f is continuous on [a,b], then the function g is defined by g(x)=a∫xf(t)dt,a⩽x⩽b, is continuous on [a,b] and differentiable on (a,b), and g′(x)=f(x)
If f is continuous on [a,b], then a∫bf(x)dx=F(b)−F(a)where F is any alternative of f, that is, a function such that F’=f
A definite integral is denoted by a∫bf(x)dx which represent the area bounded by the curve y=f(x), the ordinates x=a, x=b and the x-axis.
Complete step by step answer:
Step 1: let,
I=0∫2π(2logsinx−logsin2x)dx
Now, from trigonometry properties we know that
Sin2x=2SinxCosx
Substituting the value of sin2x, we get
I=0∫2π[2logsinx−log(2sinxcosx)]dx
Step 2: from logarithm property we know that, log(a.b)=loga+logb, using this property of logarithm in our solution,we get
I=0∫2π[2logsinx−log(2sinxcosx)]dx
I=0∫2π[2logsinx−log2−logsinx−logcosx]dx
I=0∫2π[logsinx−log2−logcosx]dx
Step 3: opening the closed bracket so that we can integrate each term separately
I=0∫2π[logsinx−log2−logcosx]dx
I=0∫2πlogsinxdx−0∫2πlog2dx−0∫2πlogcosxdx
Now let
I1=0∫2πlogcosxdx
From properties of integration we know that,
0∫af(x)dx=0∫af(a−x)dx
Using this property, we get
I1=0∫2πlogcosxdx
I1=0∫2πlogcos(2π−x)dx
I1=0∫2πlogsinxdx
Now, substituting the value of I1 in I we get
I=0∫2πlogsinxdx−0∫2πlog2dx−0∫2πlogcosxdx
I=0∫2πlogsinxdx−0∫2πlog2dx−0∫2πlogsinxdx
Step 4: cancelling the term0∫2πlogsinxdx, we get
I=0∫2πlogsinxdx−0∫2πlog2dx−0∫2πlogsinxdx
I=−0∫2πlog2dx
I=−log20∫2πdx (Log2 is a constant and therefore taking log2 outside the integration)
I=−log2[x]02π
I=−log2[2π−0]
After further simplification, we get
I=2πlog21
Hence, the answer is0∫2π(2logsinx−logsin2x)dx=2πlog21
Note: While converting sinx to cosx or vice-versa, always use the quadrant method for giving signs (negative or positive).
Use standard result for solving easily like0∫2πlogsinxdx=−2πlog2=0∫2πlogcosxdx