Solveeit Logo

Question

Question: Solve the following: \[\int {\dfrac{{{{\sin }^3}xdx}}{{\left( {1 + {{\cos }^2}x} \right)\sqrt {1 +...

Solve the following:
sin3xdx(1+cos2x)1+cos2x+cos4x\int {\dfrac{{{{\sin }^3}xdx}}{{\left( {1 + {{\cos }^2}x} \right)\sqrt {1 + {{\cos }^2}x + {{\cos }^4}x} }}}
A.sec1(secx+cosx)+C{\sec ^{ - 1}}\left( {\sec x + \cos x} \right) + C
B.sec1(secxcosx)+C{\sec ^{ - 1}}\left( {\sec x - \cos x} \right) + C
C.sec1(cosxtanx)+C{\sec ^{ - 1}}\left( {\cos x - \tan x} \right) + C
D.sec1(cosx+tanx)+C{\sec ^{ - 1}}\left( {\cos x + \tan x} \right) + C

Explanation

Solution

Hint : In the given question , we have options given in sec1{\sec ^{ - 1}} , so we have to use the formula of the derivative of the sec1{\sec ^{ - 1}} which is d(sec1x)dx=1xx21\dfrac{{d\left( {{{\sec }^{ - 1}}x} \right)}}{{dx}} = \dfrac{1}{{x\sqrt {{x^2} - 1} }} . First we simplify the given expression in terms secx\sec x , then integrate the expression accordingly .

Complete step-by-step answer :
Given : sin3xdx(1+cos2x)1+cos2x+cos4x\int {\dfrac{{{{\sin }^3}xdx}}{{\left( {1 + {{\cos }^2}x} \right)\sqrt {1 + {{\cos }^2}x + {{\cos }^4}x} }}}
Now , in the denominator we will take cosx\cos x and cos2x{\cos ^2}x from the under root term , we get
sin3xdxcosx(secx+cosx)cosxsec2x+1+cos2x\int {\dfrac{{{{\sin }^3}xdx}}{{\cos x\left( {\sec x + \cos x} \right)\cos x\sqrt {{{\sec }^2}x + 1 + {{\cos }^2}x} }}}
Now adding and subtracting 11 in the under root term of denominator ,
sin3xdxcosx(secx+cosx)cosxsec2x+1+11+cos2x\int {\dfrac{{{{\sin }^3}xdx}}{{\cos x\left( {\sec x + \cos x} \right)\cos x\sqrt {{{\sec }^2}x + 1 + 1 - 1+{{\cos }^2}x} }}}
On simplifying we get ,
sin3xdxcosx(secx+cosx)cosxsec2x+2+cos2x1\int {\dfrac{{{{\sin }^3}xdx}}{{\cos x\left( {\sec x + \cos x} \right)\cos x\sqrt {{{\sec }^2}x + 2 + {{\cos }^2}x - 1} }}}
Now using the identity of (a+b)2=a2+b2+2ab{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab in denominator we get ,
sin3xdxcos2x(secx+cosx)(secx+cosx)21\int {\dfrac{{{{\sin }^3}xdx}}{{{{\cos }^2}x\left( {\sec x + \cos x} \right)\sqrt {{{\left( {\sec x + \cos x} \right)}^2} - 1} }}}
Now let (secx+cosx)=t\left( {\sec x + \cos x} \right) = t
On simplification we get ,
1cosx+cos=t\dfrac{1}{{\cos x}} + \cos = t
On simplifying we get ,
1+cos2xcosx=t\dfrac{{1 + {{\cos }^2}x}}{{\cos x}} = t
Now differentiating w.r.t xx using quotient rule , we get
dt = \dfrac{{\left( { - 2\cos x\sin x} \right)\cos x - \left\\{ { - \sin x\left( {1 + {{\cos }^2}x} \right)} \right\\}}}{{{{\cos }^2}x}}dx
On simplifying we get ,
dt=(2cosxsinx)cosx+sinx(1+cos2x)cos2xdxdt = \dfrac{{\left( { - 2\cos x\sin x} \right)\cos x + \sin x\left( {1 + {{\cos }^2}x} \right)}}{{{{\cos }^2}x}}dx
On solving we get ,
dt=2cos2xsinx+sinxcos2x+sinxcos2xdxdt = \dfrac{{ - 2{{\cos }^2}x\sin x + \sin x{{\cos }^2}x + \sin x}}{{{{\cos }^2}x}}dx
On simplifying we get ,
dt=cos2xsinx+sinxcos2xdxdt = \dfrac{{ - {{\cos }^2}x\sin x + \sin x}}{{{{\cos }^2}x}}dx
Taking sinx\sin x common we get ,
dt=sinx(1cos2x)cos2xdxdt = \dfrac{{\sin x\left( {1 - {{\cos }^2}x} \right)}}{{{{\cos }^2}x}}dx
On using the trigonometric identity sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1 we get ,
dt=sinx(sin2x)cos2xdxdt = \dfrac{{\sin x\left( {{{\sin }^2}x} \right)}}{{{{\cos }^2}x}}dx
On simplifying we get ,
dt=sin3xcos2xdxdt = \dfrac{{{{\sin }^3}x}}{{{{\cos }^2}x}}dx
Now putting the value of dtdt and (secx+cosx)=t\left( {\sec x + \cos x} \right) = t we get ,
dttt21\int {\dfrac{{dt}}{{t\sqrt {{t^2} - 1} }}}
Now we know that derivative of sec1x{\sec ^{ - 1}}x is 1xx21\dfrac{1}{{x\sqrt {{x^2} - 1} }}, so on integrating we will get sec1x{\sec ^{ - 1}}x .
On integrating we get ,
=sec1t+C= {\sec ^{ - 1}}t + C
Now we will put the value of tt we get ,
=sec1(secx+cosx)+C= {\sec ^{ - 1}}\left( {\sec x + \cos x} \right) + C
So, the correct answer is “Option A”.

Note : When you make substitution always do it in such a way that the derivative of that will get adjusted in the given expression and then integrate accordingly . Also , write the value which you have substituted or let . In the final answer write CC ( constant ) , as it makes the answer complete .