Solveeit Logo

Question

Question: Solve the following: \[\int {\dfrac{2}{{(1 - x)(1 + {x^2})}}dx} \]...

Solve the following:
2(1x)(1+x2)dx\int {\dfrac{2}{{(1 - x)(1 + {x^2})}}dx}

Explanation

Solution

The given problem is an indefinite integral since there are no limit points. We will first decompose the function inside the integral. Then we will integrate the parts one by one. Decomposition of the function helps us to solve the problem easily.
Formula: Differentiation formula that we need to know is xndx=nxn1{x^n}dx = n{x^{n - 1}}. And the integration formulas that we need to know are cf(x)dx=cf(x)dx\int {cf(x)dx} = c\int {f(x)dx} where cc is a constant, and 1xdx=ln(x)\int {\dfrac{1}{x}dx = \ln (x)} .

Complete step by step answer:
It is given that 2(1x)(1+x2)dx\int {\dfrac{2}{{(1 - x)(1 + {x^2})}}dx} .
Using the formula cf(x)dx=cf(x)dx\int {cf(x)dx} = c\int {f(x)dx} let us rewrite the given function.
2(1x)(1+x2)dx=21(1x)(1+x2)dx\int {\dfrac{2}{{(1 - x)(1 + {x^2})}}dx} = 2\int {\dfrac{1}{{(1 - x)(1 + {x^2})}}dx}
Let f(x)=1(1x)(1+x2)f(x) = \dfrac{1}{{(1 - x)(1 + {x^2})}}
Let us first decompose f(x)f(x) using partial fraction decomposition.
On decomposing we get f(x)=x+12(x2+1)12(x1)f(x) = \dfrac{{x + 1}}{{2({x^2} + 1)}} - \dfrac{1}{{2(x - 1)}}
Let us substitute it in the integral function.
21(1x)(1+x2)dx=2x+12(x2+1)12(x1)dx2\int {\dfrac{1}{{(1 - x)(1 + {x^2})}}dx} = 2\int {\dfrac{{x + 1}}{{2({x^2} + 1)}} - \dfrac{1}{{2(x - 1)}}dx}
Let us now split the integral.
=2x+12(x2+1)dx212(x1)dx= 2\int {\dfrac{{x + 1}}{{2({x^2} + 1)}}dx - 2\int {\dfrac{1}{{2(x - 1)}}dx} }
Using the formula cf(x)dx=cf(x)dx\int {cf(x)dx} = c\int {f(x)dx} again.
=x+1(x2+1)dx1(x1)dx= \int {\dfrac{{x + 1}}{{({x^2} + 1)}}dx - \int {\dfrac{1}{{(x - 1)}}dx} }
Now let us start to integrate the second term.
Let u=x1u = x - 1. On differentiating this concern, the variable xx we get du=dxdu = dx let us substitute them in the above expression.
=x+1x2+1dx1udu= \int {\dfrac{{x + 1}}{{{x^2} + 1}}dx - \int {\dfrac{1}{u}du} }
Using the formula 1xdx=ln(x)\int {\dfrac{1}{x}dx = \ln (x)} we get
=x+1x2+1dxln(u)= \int {\dfrac{{x + 1}}{{{x^2} + 1}}dx - \ln (u)}
Let’s re-substitute u=x1u = x - 1.
=x+1x2+1dxln(x1)= \int {\dfrac{{x + 1}}{{{x^2} + 1}}dx - \ln (x - 1)}
Now let us integrate the first function. Let’s split that fraction first.
=(xx2+1+1x2+1)dxln(x1)= \int {\left( {\dfrac{x}{{{x^2} + 1}} + \dfrac{1}{{{x^2} + 1}}} \right)dx - \ln (x - 1)}
Now let us split the integral.
=xx2+1dx+1x2+1dxln(x1)= \int {\dfrac{x}{{{x^2} + 1}}dx + \int {\dfrac{1}{{{x^2} + 1}}} dx - \ln (x - 1)}
Now let us substituteu=x2+1u = {x^2} + 1. On differentiating this concern, the variable xxwe get xdx=du2xdx = \dfrac{{du}}{2}let us substitute them in the above expression.
=12udu+1x2+1dxln(x1)= \int {\dfrac{1}{{2u}}du + \int {\dfrac{1}{{{x^2} + 1}}} dx - \ln (x - 1)}
Again, using the formula cf(x)dx=cf(x)dx\int {cf(x)dx} = c\int {f(x)dx} we get
=121udu+1x2+1dxln(x1)= \dfrac{1}{2}\int {\dfrac{1}{u}du + \int {\dfrac{1}{{{x^2} + 1}}} dx - \ln (x - 1)}
Now let’s integrate it using the formula 1xdx=ln(x)\int {\dfrac{1}{x}dx = \ln (x)} .
=ln(u)2+1x2+1dxln(x1)= \dfrac{{\ln (u)}}{2} + \int {\dfrac{1}{{{x^2} + 1}}} dx - \ln (x - 1)
Now let’s re-substitute u=x2+1u = {x^2} + 1.
=ln(x2+1)2+1x2+1dxln(x1)= \dfrac{{\ln ({x^2} + 1)}}{2} + \int {\dfrac{1}{{{x^2} + 1}}} dx - \ln (x - 1)
Now let’s integrate the second part. Using the formula 1x2+1dx=tan1(x)\int {\dfrac{1}{{{x^2} + 1}}dx = {{\tan }^{ - 1}}(x)}
=ln(x2+1)2+tan1(x)ln(x1)+C= \dfrac{{\ln ({x^2} + 1)}}{2} + {\tan ^{ - 1}}(x) - \ln (x - 1) + C, where CC is the integration constant
Thus, 2(1x)(1+x2)dx=ln(x2+1)2+tan1(x)ln(x1)+C\int {\dfrac{2}{{(1 - x)(1 + {x^2})}}dx} = \dfrac{{\ln ({x^2} + 1)}}{2} + {\tan ^{ - 1}}(x) - \ln (x - 1) + C

Note: There are two types of integral available, they are definite and indefinite. Definite integral will have limit points and indefinite integrals won’t have any limit points. If there is a limit point, we need to substitute it after the integration.