Solveeit Logo

Question

Question: Solve the following for \(x\): \(3{\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right)...

Solve the following for xx:
3tan1(x)+cot1(x)=π3{\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = \pi

Explanation

Solution

we are asked to solve 3tan1(x)+cot1(x)=π3{\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = \pi . Here, we will convert the equation in one trigonometric function using identity and then we will simplify to obtain the required answer.
Formula to be used:
The required trigonometric identity that is used to solve the given problem is as follows.
tanx=cot(π2x)\tan x = \cot \left( {\dfrac{\pi }{2} - x} \right)

Complete step by step answer:
The given equation is
3tan1(x)+cot1(x)=π3{\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = \pi
2tan1(x)+tan1(x)+cot1(x)=π\Rightarrow 2{\tan ^{ - 1}}\left( x \right) + {\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = \pi
Before getting into next step, we shall consider tan1(x)=p{\tan ^{ - 1}}\left( x \right) = p
Let tan1(x)=p{\tan ^{ - 1}}\left( x \right) = p. Then, tanp=x\tan p = x.
tanp=cot(π2p)\tan p = \cot \left( {\dfrac{\pi }{2} - p} \right) (Here we have substituted the trigonometric identity tanx=cot(π2x)\tan x = \cot \left( {\dfrac{\pi }{2} - x} \right))
x=cot(π2p)\Rightarrow x = \cot \left( {\dfrac{\pi }{2} - p} \right) (We have substituted tanp=x\tan p = x)
cot1x=π2p\Rightarrow {\cot ^{ - 1}}x = \dfrac{\pi }{2} - p
tan1(x)+cot1(x)=p+π2p\Rightarrow {\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = p + \dfrac{\pi }{2} - p (Here we have added both the inverse of tangent and cotangent)
tan1(x)+cot1(x)=π2\Rightarrow {\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = \dfrac{\pi }{2} ……..(1)\left( 1 \right)
Now, we shall get into our solution.
3tan1(x)+cot1(x)=π3{\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = \pi
2tan1(x)+tan1(x)+cot1(x)=π\Rightarrow 2{\tan ^{ - 1}}\left( x \right) + {\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = \pi
2tan1(x)+π2=π\Rightarrow 2{\tan ^{ - 1}}\left( x \right) + \dfrac{\pi }{2} = \pi (Here we have substituted the equation (1)\left( 1 \right))
2tan1(x)=ππ2\Rightarrow 2{\tan ^{ - 1}}\left( x \right) = \pi - \dfrac{\pi }{2}
2tan1(x)=π2\Rightarrow 2{\tan ^{ - 1}}\left( x \right) = \dfrac{\pi }{2}
tan1(x)=π2×12\Rightarrow {\tan ^{ - 1}}\left( x \right) = \dfrac{\pi }{2} \times \dfrac{1}{2}
tan1(x)=π4\Rightarrow {\tan ^{ - 1}}\left( x \right) = \dfrac{\pi }{4}
x=tanπ4\Rightarrow x = \tan \dfrac{\pi }{4}
x=1\Rightarrow x = 1 (We know that tanπ4=1\tan \dfrac{\pi }{4} = 1)
Hence x=1x = 1 is the desired solution for the given equation.

Note:
Here students should not that tan1(x)+cot1(x)=π2 \Rightarrow {\tan ^{ - 1}}\left( x \right) + {\cot ^{ - 1}}\left( x \right) = \dfrac{\pi }{2} this expression is also an identity. So we can directly use it to simplify the calculation.