Solveeit Logo

Question

Question: Solve the following expression : \[\sum\limits_{k = 1}^{2n + 1} {{{\left( { - 1} \right)}^{k - 1}}{k...

Solve the following expression : k=12n+1(1)k1k2\sum\limits_{k = 1}^{2n + 1} {{{\left( { - 1} \right)}^{k - 1}}{k^2}}
A. Cannot be determined
B. (n1)(2n1)\left( {n - 1} \right)\left( {2n - 1} \right)
C. None of these
D. (n+1)(2n+1)\left( {n + 1} \right)\left( {2n + 1} \right)

Explanation

Solution

The given problem revolves around the concepts of the equation of summation for the sequence containing squares, cubes, etc. So, we will first analyze the given expression with general formulae i=1nn2=n(n+1)(2n+1)6\sum\limits_{i = 1}^n {{n^2} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}} which is the squares sequence. Then, by substituting the given expression with the standard formula, the desired solution can be obtained.

Complete step by step answer:
Since, we have given the expression that
k=12n+1(1)k1k2\sum\limits_{k = 1}^{2n + 1} {{{\left( { - 1} \right)}^{k - 1}}{k^2}}
Since, it seems that after substituting the one by one values serially from one that is k=1k = 1, we get
k=12n+1(1)k1k2=1222+3242+....(2n)2+(2n+1)2\sum\limits_{k = 1}^{2n + 1} {{{\left( { - 1} \right)}^{k - 1}}{k^2}} = {1^2} - {2^2} + {3^2} - {4^2} + .... - {\left( {2n} \right)^2} + {\left( {2n + 1} \right)^2}
Separating the negative as well as positive terms in one bracket, we get
k=12n+1(1)k1k2=[12+32+....+(2n+1)2][22+42+....+(2n)2]\sum\limits_{k = 1}^{2n + 1} {{{\left( { - 1} \right)}^{k - 1}}{k^2}} = \left[ {{1^2} + {3^2} + .... + {{\left( {2n + 1} \right)}^2}} \right] - \left[ {{2^2} + {4^2} + .... + {{\left( {2n} \right)}^2}} \right]
Combining both the brackets, we get

\Rightarrow \sum\limits_{k = 1}^{2n + 1} {{{\left( { - 1} \right)}^{k - 1}}{k^2}} = \sum\limits_{k = 1}^{2n + 1} {{{\left( {2n + 1} \right)}^2} - 8\sum\limits_{i = 1}^n {\left( {{1^2} + {2^2} + {3^2} + ... + {n^2}} \right)} } \\\ $$ … (i) Now, we know that the summation of any square of nth term is always, $\sum\limits_{i = 1}^n {{n^2} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}} $ So using this formula the required solution is; Let us solve one by one, first of all we will consider $$\sum\limits_{i = 1}^n {{n^2} = {{\left( {2n + 1} \right)}^2}} $$ term, we get Using the above mentioned formula substituting the respective term, we get $$\sum\limits_{i = 1}^n {{n^2} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}} $$ But, there is ‘$n$’ tends to ‘$2n + 1$that is$n \to 2n + 1$ As a result, we get $$\sum\limits_{i = 1}^n {{{\left( {2n + 1} \right)}^2} = \dfrac{{\left( {2n + 1} \right)\left( {2 + n + 1} \right)\left[ {2\left( {2n + 1} \right) + 1} \right]}}{6}} $$ Similarly, considering the second term$$\sum\limits_{k = 1}^{2n + 1} {{{\left( {2n + 1} \right)}^2} = } 2{\left( 2 \right)^2}\left[ {{1^2} + {2^2} + {3^2} + ... + {n^2}} \right]$$, we get $$\sum\limits_{k = 1}^{2n + 1} {{{\left( {2n + 1} \right)}^2} = } 2{\left( 2 \right)^2}\left[ {{1^2} + {2^2} + {3^2} + ... + {n^2}} \right] \\\ \Rightarrow \sum\limits_{k = 1}^{2n + 1} {{{\left( {2n + 1} \right)}^2} = 8} \sum\limits_{k = 1}^{2n + 1} {\left( {{1^2} + {2^2} + {3^2} + ... + {n^2}} \right)} \\\ $$ Solving the equation mathematically, we get $$\sum\limits_{k = 1}^{2n + 1} {{n^2} = 8} \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}$$ Now, the equation (i) becomes $$\sum\limits_{k = 1}^{2n + 1} {{{\left( { - 1} \right)}^{k - 1}}{k^2}} = \dfrac{{\left( {2n + 1} \right)\left( {2n + 1 + 1} \right)\left[ {2\left( {2n + 1} \right) + 1} \right] - 8n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} \\\ \Rightarrow \sum\limits_{k = 1}^{2n + 1} {{{\left( { - 1} \right)}^{k - 1}}{k^2}} = \dfrac{{\left( {2n + 1} \right)}}{6}\left[ {\left( {2n + 2} \right)\left[ {4n + 2 + 1} \right] - 8n\left( {n + 1} \right)} \right] \\\ $$ Significantly, solving the equation, we get $$\sum\limits_{k = 1}^{2n + 1} {{{\left( { - 1} \right)}^{k - 1}}{k^2}} = \dfrac{{\left( {2n + 1} \right)}}{6}\left[ {2\left( {n + 1} \right)\left[ {4n + 3} \right] - 8n\left( {n + 1} \right)} \right]$$ Taking $n + 1$common from the equation, we get $$\sum\limits_{k = 1}^{2n + 1} {{{\left( { - 1} \right)}^{k - 1}}{k^2}} = \dfrac{{\left( {2n + 1} \right)\left( {n + 1} \right)}}{6}\left[ {8n + 6 - 8n} \right]$$ Solving the equation mathematically, we get $$\sum\limits_{k = 1}^{2n + 1} {{{\left( { - 1} \right)}^{k - 1}}{k^2}} = \left( {2n + 1} \right)\left( {n + 1} \right)$$ **Hence, option D is correct.** **Note:** One must be able to compare the given such expression/s of summation algebraically being asked to solve! Here, the expression is contains its square which is represented by $\sum\limits_{i = 1}^n {{n^2} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}} $. Absolute expansion, substitution and solution is necessary, so as to be sure of our final answer.