Solveeit Logo

Question

Question: Solve the following expression \[\sin mx+\sin nx=0\]...

Solve the following expression sinmx+sinnx=0\sin mx+\sin nx=0

Explanation

Solution

Hint: We will first simplify the given expression sinmx+sinnx=0\sin mx+\sin nx=0 using the formula sinA+sinB=2sin(A+B2)cos(AB2)\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) and then we will solve both the factors separately to get two values of x.

Complete step-by-step answer:
The expression mentioned in the question is sinmx+sinnx=0.........(1)\sin mx+\sin nx=0.........(1)
Now we know the formula sinA+sinB=2sin(A+B2)cos(AB2)\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) and hence applying this in equation (1) we get,
2sin((m+n2)x)cos((mn2)x)=0........(2)\Rightarrow 2\sin \left( \left( \dfrac{m+n}{2} \right)x \right)\cos \left( \left( \dfrac{m-n}{2} \right)x \right)=0........(2)
Now separating the terms and equating it to 0 in equation (2) we get,
sin((m+n2)x)=0.......(3)\Rightarrow \sin \left( \left( \dfrac{m+n}{2} \right)x \right)=0.......(3) and cos((mn2)x)=0.......(4)\cos \left( \left( \dfrac{m-n}{2} \right)x \right)=0.......(4)
Now we can write 0 in the right hand side of equation (3) as sin 0 and hence we get,
sin((m+n2)x)=sin0.......(5)\Rightarrow \sin \left( \left( \dfrac{m+n}{2} \right)x \right)=\sin 0.......(5)
Now we know the general formula when sinθ=sinα\sin \theta =\sin \alpha and it implies θ=nπ+(1)nα\theta =n\pi +{{(-1)}^{n}}\alpha . So applying this in equation (5) we get,
(m+n)x2=nπ.......(6)\Rightarrow (m+n)\dfrac{x}{2}=n\pi .......(6)
Now rearranging and solving for x in equation (6) we get,
x=2nπm+n.....(7)\Rightarrow x=\dfrac{2n\pi }{m+n}.....(7)
Now solving equation (4) to find the other value of x and substituting cosπ2\cos \dfrac{\pi }{2} in place of 0 we get,
cos((mn2)x)=cosπ2.......(8)\Rightarrow \cos \left( \left( \dfrac{m-n}{2} \right)x \right)=\cos \dfrac{\pi }{2}.......(8)
Now we know the general formula when cosθ=cosα\cos \theta =\cos \alpha and it implies θ=2nπ±α\theta =2n\pi \pm \alpha . So applying this in equation (8) we get,
(mn)x2=(2n+1)π2.......(9)\Rightarrow (m-n)\dfrac{x}{2}=(2n+1)\dfrac{\pi }{2}.......(9)
Now rearranging and solving for x in equation (9) we get,
x=(2n+1)πmn.......(10)\Rightarrow x=\dfrac{(2n+1)\pi }{m-n}.......(10)
Hence from equation (7) and equation (10) we get two values of x which are x=2nπm+nx=\dfrac{2n\pi }{m+n} and x=(2n+1)πmnx=\dfrac{(2n+1)\pi }{m-n}.

Note: Remembering the basic trigonometry formulas is the key here. Also we should remember the general formulas θ=nπ+(1)nα\theta =n\pi +{{(-1)}^{n}}\alpha when sinθ=sinα\sin \theta =\sin \alpha and θ=2nπ±α\theta =2n\pi \pm \alpha when cosθ=cosα\cos \theta =\cos \alpha . We in a hurry can make a mistake in solving equation (6) and equation (9) and hence we need to be careful while doing these steps.