Solveeit Logo

Question

Question: Solve the following expression, \(\cos \theta +\cos 3\theta -2\cos 2\theta =0\). A. \(\theta =\lef...

Solve the following expression, cosθ+cos3θ2cos2θ=0\cos \theta +\cos 3\theta -2\cos 2\theta =0.
A. θ=(2n+1)π4,nz\theta =\left( 2n+1 \right)\dfrac{\pi }{4},n\in z
B. θ=mπ,mz\theta =m\pi ,m\in z
C. θ=2mπ,mz\theta =2m\pi ,m\in z
D. θ=(2n+1)π8,nz\theta =\left( 2n+1 \right)\dfrac{\pi }{8},n\in z

Explanation

Solution

Hint: To solve this question, we should know a few trigonometric identities like, cosa+cosb=2cosa+b2cosab2\cos a+\cos b=2\cos \dfrac{a+b}{2}\cos \dfrac{a-b}{2}. We should also have some knowledge of general equations like if cosx=cosα\cos x=\cos \alpha , then x=2mπ±αx=2m\pi \pm \alpha , whereα[0,π2]\alpha \in \left[ 0,\dfrac{\pi }{2} \right] and if cosx=0\cos x=0, then x=nπ+π2x=n\pi +\dfrac{\pi }{2}. Also, we should know that cos0=1\cos 0=1. We can solve this question by using these properties.

Complete step-by-step answer:
In this question, we have been asked to solve an equation, that is, cosθ+cos3θ2cos2θ=0\cos \theta +\cos 3\theta -2\cos 2\theta =0. To solve this question, we will write the given equation as follows,
cosθ+cos3θ2cos2θ=0\cos \theta +\cos 3\theta -2\cos 2\theta =0
Now, we know that cosa+cosb=2cosa+b2cosab2\cos a+\cos b=2\cos \dfrac{a+b}{2}\cos \dfrac{a-b}{2}. So, for a=3θa=3\theta and b=θb=\theta , we will the equation as,
2cos(3θ+θ2)cos(3θθ2)2cos2θ=02\cos \left( \dfrac{3\theta +\theta }{2} \right)\cos \left( \dfrac{3\theta -\theta }{2} \right)-2\cos 2\theta =0
And we can write it further as,
2cos(4θ2)cos(2θ2)2cos2θ=0 2cos2θcosθ2cos2θ=0 \begin{aligned} & 2\cos \left( \dfrac{4\theta }{2} \right)\cos \left( \dfrac{2\theta }{2} \right)-2\cos 2\theta =0 \\\ & \Rightarrow 2\cos 2\theta \cos \theta -2\cos 2\theta =0 \\\ \end{aligned}
And, we can see that 2cos2θ2\cos 2\theta can be taken out as the common term. So, we get the above equation as,
2cos2θ(cosθ1)=02\cos 2\theta \left( \cos \theta -1 \right)=0
Now, we know that the equation has to satisfy either 2cos2θ=02\cos 2\theta =0 or (cosθ1)=0\left( \cos \theta -1 \right)=0. So, we can write as, cos2θ=0\cos 2\theta =0 or cosθ=1\cos \theta =1. We know that cos0=1\cos 0=1, so we can write the above equation as, cos2θ=0\cos 2\theta =0 or cosθ=cos0\cos \theta =\cos 0.
Now, we know that if cosθ=cosα\cos \theta =\cos \alpha , then θ=2mπ±α\theta =2m\pi \pm \alpha and if cosθ=0\cos \theta =0, then θ=nπ+π2\theta =n\pi +\dfrac{\pi }{2}, so,
2θ=nπ±π22\theta =n\pi \pm \dfrac{\pi }{2} or θ=2mπ±0\theta =2m\pi \pm 0
And, we can further write it as,
θ=nπ2±π4 or θ=2mπ;m,nz θ=(2n+1)π4 and θ=2mπ;m,nz \begin{aligned} & \theta =\dfrac{n\pi }{2}\pm \dfrac{\pi }{4}\text{ }or\text{ }\theta =2m\pi ;m,n\in z \\\ & \Rightarrow \theta =\left( 2n+1 \right)\dfrac{\pi }{4}\text{ }and\text{ }\theta =2m\pi ;m,n\in z \\\ \end{aligned}
Hence, we can say that according to the options given in the question, options A and C are the correct options for this question.

Note: We have to remember while solving this question that, if cosθ=0\cos \theta =0, then θ=nπ+π2\theta =n\pi +\dfrac{\pi }{2}. It is because if we write 0=cosπ20=\cos \dfrac{\pi }{2} and then write cosθ=cosπ2\cos \theta =\cos \dfrac{\pi }{2} and then use the general formula of, if cosθ=cosα\cos \theta =\cos \alpha , then θ=2mπ±α\theta =2m\pi \pm \alpha , we may skip a few values and will get the incorrect answers.