Solveeit Logo

Question

Question: Solve the following equations using the Matrix Inversion method. \(2x - 3y + 6 = 0\) and \(6x + y ...

Solve the following equations using the Matrix Inversion method.
2x3y+6=02x - 3y + 6 = 0 and 6x+y+8=06x + y + 8 = 0.

Explanation

Solution

If two equations are in the form of a1x+b1y=c1a_1x+b_1y=c_1 and a2x+b2y=c2a_2x+b_2y=c_2, then matrix inversion method gives us A1{A^{ - 1}} to AX=BAX = B where A = \left[ {\begin{array}{*{20}{c}} {{a_1}}&{{b_1}} \\\ {{a_2}}&{{b_2}} \end{array}} \right] , B=[c1 c2 ]B=\left[ \begin{matrix} {{c}_{1}} \\\ {{c}_{2}} \\\ \end{matrix} \right]
and X=[x1 x2 ]X = \left[ \begin{matrix} {{x}_{1}} \\\ {{x}_{2}} \\\ \end{matrix} \right] . We first convert the equations in standard form ax+by=cax + by = cand then find the determinant and adjoint of AA. Using the Matrix Inversion formula, we find the value of XX in terms of a matrix.

Formula used:
The given equations are 2x3y+6=02x - 3y + 6 = 0 and 6x+y+8=06x + y + 8 = 0
To use the matrix inversion method, we have to first convert the equations in standard form as ax+by=cax + by = c.
The equations in standard form are 2x3y=62x - 3y = - 6 and 6x+y=86x + y = - 8
The matrix equation is AX=BAX = B
Where A = \left[ {\begin{array}{*{20}{c}} {{a_1}}&{{b_1}} \\\ {{a_2}}&{{b_2}} \end{array}} \right] , B = \left[ {\begin{array}{*{20}{c}} {{c_1}}\\\ {{c_2}} \end{array}} \right] and X = \left[ {\begin{array}{*{20}{c}} {{x_1}}\\\ {{x_2}} \end{array}} \right]
The values of equation in matrix form are
A = \left[ {\begin{array}{*{20}{c}} 2&{ - 3} \\\ 6&1 \end{array}} \right] , B = \left[ {\begin{array}{*{20}{c}} -6\\\ -8 \end{array}} \right] and X = \left[ {\begin{array}{*{20}{c}} x\\\ y \end{array}} \right]
Using the Matrix Inversion method,
\left[ {\begin{array}{*{20}{c}} 2&{ - 3} \\\ 6&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} x\\\ y \end{array}} \right]= \left[ {\begin{array}{*{20}{c}} -6\\\ -8 \end{array}} \right]
The matrix equation is AX=BAX = B
Pre multiplying the above matrix by A1{A^{ - 1}} on both sides of equation we get,
A1AX=A1B{A^{ - 1}}AX = {A^{ - 1}}B
We know, A1A=I{A^{ - 1}}A = I and IX=XIX = X,
Therefore, IX=A1BIX = {A^{ - 1}}B
X=A1BX = {A^{ - 1}}B
Now we will find the determinant of matrix AA.
A = \left| {\begin{array}{*{20}{c}} 2&{ - 3} \\\ 6&1 \end{array}} \right|
A=(2×1)(3×6)\left| A \right| = (2 \times 1) - ( - 3 \times 6)
A=2+(3×6)\left| A \right| = 2 + (3 \times 6)
A=2+18\left| A \right| = 2 + 18
A=20\left| A \right| = 20
If A = \left[ {\begin{array}{*{20}{c}} a&b; \\\ c&d; \end{array}} \right] then adjoint of A = \left[ {\begin{array}{*{20}{c}} d&{ - b} \\\ { - c}&a; \end{array}} \right]
Here A = \left[ {\begin{array}{*{20}{c}} 2&{ - 3} \\\ 6&1 \end{array}} \right] then adjoint of A = \left[ {\begin{array}{*{20}{c}} 1&3 \\\ { - 6}&2 \end{array}} \right]
We know, A1=1Aadj(A){A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj(A)
Substituting the values in the formula,
{A^{ - 1}} = \dfrac{1}{{20}}\left[ {\begin{array}{*{20}{c}} 1&3 \\\ { - 6}&2 \end{array}} \right]
Now we have {A^{ - 1}} = \dfrac{1}{{20}}\left[ {\begin{array}{*{20}{c}} 1&3 \\\ { - 6}&2 \end{array}} \right], B = \left[ {\begin{array}{*{20}{c}} -6 \\\ -8 \end{array}} \right] and X = \left[ {\begin{array}{*{20}{c}} x \\\ y \end{array}} \right]
So, substituting these values in the equation X=A1BX = {A^{ - 1}}B,
X = \dfrac{1}{{20}}\left[ {\begin{array}{*{20}{c}} 1&3 \\\ { - 6}&2 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} -6 \\\ -8 \end{array}} \right]
Multiplying the matrices,
X = \dfrac{1}{{20}}\left[ {\begin{array}{*{20}{c}} (1 \times - 6) + (3 \times - 8) \\\ ( - 6 \times - 6) + (2 \times - 8) \end{array}} \right]
Solving the arithmetic,
X = \dfrac{1}{{20}}\left[ {\begin{array}{*{20}{c}} -6-24 \\\ 36-16 \end{array}} \right]
Solving the arithmetic,
X = \dfrac{1}{{20}}\left[ {\begin{array}{*{20}{c}} -30 \\\ 20 \end{array}} \right]
Taking the determinant inside the matrix,
X = \left[ {\begin{array}{*{20}{c}} \dfrac{-30}{{20}} \\\ \dfrac{20}{{20}} \end{array}} \right]
Simplifying the elements,
X = \left[ {\begin{array}{*{20}{c}} \dfrac{-3}{{2}} \\\ 1 \end{array}} \right]
X = \left[ {\begin{array}{*{20}{c}} \dfrac{-3}{{2}} \\\ 1 \end{array}} \right]= \left[ {\begin{array}{*{20}{c}} x \\\ y \end{array}} \right]
Therefore, we get, x=32x = \dfrac{{ - 3}}{2} and y=1y = 1 .
The solution of the matrices is x=32x = \dfrac{{ - 3}}{2} and y=1y = 1.

Note:
Matrix Inversion method can be applied only when the coefficient matrix is a square matrix and non-singular. The different types of inversion methods are Gauss-Jordan Elimination, Classical Adjoint method, Partition method.