Question
Question: Solve the following equations using the Matrix Inversion method. \(2x - 3y + 6 = 0\) and \(6x + y ...
Solve the following equations using the Matrix Inversion method.
2x−3y+6=0 and 6x+y+8=0.
Solution
If two equations are in the form of a1x+b1y=c1 and a2x+b2y=c2, then matrix inversion method gives us A−1 to AX=B where A = \left[ {\begin{array}{*{20}{c}}
{{a_1}}&{{b_1}} \\\
{{a_2}}&{{b_2}}
\end{array}} \right] , B=c1 c2
and X=x1 x2 . We first convert the equations in standard form ax+by=cand then find the determinant and adjoint of A. Using the Matrix Inversion formula, we find the value of X in terms of a matrix.
Formula used:
The given equations are 2x−3y+6=0 and 6x+y+8=0
To use the matrix inversion method, we have to first convert the equations in standard form as ax+by=c.
The equations in standard form are 2x−3y=−6 and 6x+y=−8
The matrix equation is AX=B
Where A = \left[ {\begin{array}{*{20}{c}}
{{a_1}}&{{b_1}} \\\
{{a_2}}&{{b_2}}
\end{array}} \right] , B = \left[ {\begin{array}{*{20}{c}}
{{c_1}}\\\
{{c_2}}
\end{array}} \right] and X = \left[ {\begin{array}{*{20}{c}}
{{x_1}}\\\
{{x_2}} \end{array}} \right]
The values of equation in matrix form are
A = \left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\\
6&1
\end{array}} \right] , B = \left[ {\begin{array}{*{20}{c}}
-6\\\
-8
\end{array}} \right] and X = \left[ {\begin{array}{*{20}{c}}
x\\\
y \end{array}} \right]
Using the Matrix Inversion method,
\left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\\
6&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x\\\
y \end{array}} \right]= \left[ {\begin{array}{*{20}{c}}
-6\\\
-8
\end{array}} \right]
The matrix equation is AX=B
Pre multiplying the above matrix by A−1 on both sides of equation we get,
A−1AX=A−1B
We know, A−1A=I and IX=X,
Therefore, IX=A−1B
X=A−1B
Now we will find the determinant of matrix A.
A = \left| {\begin{array}{*{20}{c}}
2&{ - 3} \\\
6&1
\end{array}} \right|
∣A∣=(2×1)−(−3×6)
∣A∣=2+(3×6)
∣A∣=2+18
∣A∣=20
If A = \left[ {\begin{array}{*{20}{c}}
a&b; \\\
c&d;
\end{array}} \right] then adjoint of A = \left[ {\begin{array}{*{20}{c}}
d&{ - b} \\\
{ - c}&a;
\end{array}} \right]
Here A = \left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\\
6&1
\end{array}} \right] then adjoint of A = \left[ {\begin{array}{*{20}{c}}
1&3 \\\
{ - 6}&2
\end{array}} \right]
We know, A−1=∣A∣1adj(A)
Substituting the values in the formula,
{A^{ - 1}} = \dfrac{1}{{20}}\left[ {\begin{array}{*{20}{c}}
1&3 \\\
{ - 6}&2
\end{array}} \right]
Now we have {A^{ - 1}} = \dfrac{1}{{20}}\left[ {\begin{array}{*{20}{c}}
1&3 \\\
{ - 6}&2
\end{array}} \right], B = \left[ {\begin{array}{*{20}{c}}
-6 \\\
-8
\end{array}} \right] and X = \left[ {\begin{array}{*{20}{c}}
x \\\
y
\end{array}} \right]
So, substituting these values in the equation X=A−1B,
X = \dfrac{1}{{20}}\left[ {\begin{array}{*{20}{c}}
1&3 \\\
{ - 6}&2
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
-6 \\\
-8
\end{array}} \right]
Multiplying the matrices,
X = \dfrac{1}{{20}}\left[ {\begin{array}{*{20}{c}}
(1 \times - 6) + (3 \times - 8) \\\
( - 6 \times - 6) + (2 \times - 8)
\end{array}} \right]
Solving the arithmetic,
X = \dfrac{1}{{20}}\left[ {\begin{array}{*{20}{c}}
-6-24 \\\
36-16
\end{array}} \right]
Solving the arithmetic,
X = \dfrac{1}{{20}}\left[ {\begin{array}{*{20}{c}}
-30 \\\
20
\end{array}} \right]
Taking the determinant inside the matrix,
X = \left[ {\begin{array}{*{20}{c}}
\dfrac{-30}{{20}} \\\
\dfrac{20}{{20}}
\end{array}} \right]
Simplifying the elements,
X = \left[ {\begin{array}{*{20}{c}}
\dfrac{-3}{{2}} \\\
1
\end{array}} \right]
X = \left[ {\begin{array}{*{20}{c}}
\dfrac{-3}{{2}} \\\
1
\end{array}} \right]= \left[ {\begin{array}{*{20}{c}}
x \\\
y
\end{array}} \right]
Therefore, we get, x=2−3 and y=1 .
The solution of the matrices is x=2−3 and y=1.
Note:
Matrix Inversion method can be applied only when the coefficient matrix is a square matrix and non-singular. The different types of inversion methods are Gauss-Jordan Elimination, Classical Adjoint method, Partition method.