Solveeit Logo

Question

Question: Solve the following equations: \(\left( {{x^2} - {y^2}} \right)\left( {x - y} \right) = 16xy,\left...

Solve the following equations:
(x2y2)(xy)=16xy,(x4y4)(x2y2)=640x2y2\left( {{x^2} - {y^2}} \right)\left( {x - y} \right) = 16xy,\left( {{x^4} - {y^4}} \right)\left( {{x^2} - {y^2}} \right) = 640{x^2}{y^2}
A. x = 0,y = 0 B. x = 9,y = 3 C. x = 4,y = 5 D. x = 3,y = 9  {\text{A}}{\text{. }}x{\text{ = 0,}}y{\text{ = 0}} \\\ {\text{B}}{\text{. }}x{\text{ = 9,}}y{\text{ = 3}} \\\ {\text{C}}{\text{. }}x{\text{ = 4,}}y{\text{ = 5}} \\\ {\text{D}}{\text{. }}x{\text{ = 3,}}y{\text{ = 9}} \\\

Explanation

Solution

Hint: If you depict these equations as quadratic i.e. equation with degree 00 and biquadratic i.e. equation with degree 11 in two variables, you are absolutely on the right path. You must write both the equations and try to find the common term between them to make them connected in a certain way as in order to solve them which will then lead us to the values of x and yx{\text{ and }}y.

Complete step-by-step answer:
Given equations are:
(x2y2)(xy)=16xy\left( {{x^2} - {y^2}} \right)\left( {x - y} \right) = 16xy
xy=(x2y2)(xy)16\Rightarrow xy = \dfrac{{\left( {{x^2} - {y^2}} \right)\left( {x - y} \right)}}{{16}} … (1)
And squaring on both sides we get,
(x4y4)(x2y2)=640x2y2\left( {{x^4} - {y^4}} \right)\left( {{x^2} - {y^2}} \right) = 640{x^2}{y^2}
By using formula a4b4=(ab)(a+b)(a2+b2){a^4} - {b^4} = \left( {a - b} \right)\left( {a + b} \right)\left( {{a^2} + {b^2}} \right) we get,
(xy)(x+y)(x2+y2)(x2y2)=640x2y2\Rightarrow \left( {x - y} \right)\left( {x + y} \right)\left( {{x^2} + {y^2}} \right)\left( {{x^2} - {y^2}} \right) = 640{x^2}{y^2}
Now by using formula (ab)(a+b)=a2b2\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2} we can write,
(x2+y2)(x2y2)2=640(xy)2\Rightarrow \left( {{x^2} + {y^2}} \right){\left( {{x^2} - {y^2}} \right)^2} = 640{\left( {xy} \right)^2}
Substitute the value of equation (1), in above equation, we get
\Rightarrow \left( {{x^2} + {y^2}} \right){\left( {{x^2} - {y^2}} \right)^2} = 640{\left\\{ {\dfrac{{\left( {{x^2} - {y^2}} \right)\left( {x - y} \right)}}{{16}}} \right\\}^2}
\Rightarrow \left( {{x^2} + {y^2}} \right){\left( {{x^2} - {y^2}} \right)^2} = 640\left\\{ {\dfrac{{{{\left( {{x^2} - {y^2}} \right)}^2}{{\left( {x - y} \right)}^2}}}{{256}}} \right\\}
2(x2+y2)(x2y2)2=5(x2y2)2(xy)2 2(x2+y2)=5(xy)2  \Rightarrow \,2\left( {{x^2} + {y^2}} \right){\left( {{x^2} - {y^2}} \right)^2} = 5{\left( {{x^2} - {y^2}} \right)^2}{\left( {x - y} \right)^2} \\\ \Rightarrow \,2\left( {{x^2} + {y^2}} \right) = 5{\left( {x - y} \right)^2} \\\
Now by using formula (ab)2=a2+b22ab{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab,
2(x2+y2)=5(x2+y22xy) 2x2+2y2=5x2+5y210xy 3x2+3y2=10xy x2+y2=10xy3  \Rightarrow \,2\left( {{x^2} + {y^2}} \right) = 5\left( {{x^2} + {y^2} - 2xy} \right) \\\ \Rightarrow {\text{2}}{x^2} + 2{y^2} = 5{x^2} + 5{y^2} - 10xy \\\ \Rightarrow 3{x^2} + 3{y^2} = 10xy \\\ \Rightarrow {x^2} + {y^2} = \dfrac{{10xy}}{3} \\\
Subtract 2xy2xy from both sides,
x2+y22xy=10xy32xy \Rightarrow {x^2} + {y^2} - 2xy = \dfrac{{10xy}}{3} - 2xy
Now by using a2b2+2ab=(ab)2{a^2} - {b^2} + 2ab = {\left( {a - b} \right)^2},
(xy)2=4xy3  \Rightarrow {\left( {x - y} \right)^2} = \dfrac{{4xy}}{3}{\text{ }} … (2)
By using formula a2b2=(ab)(a+b){a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right) from (1) we have,
(x+y)(xy)2=16xy \Rightarrow \left( {x + y} \right){\left( {x - y} \right)^2} = 16xy … (3)
Substituting (2) in (3) we get,
(x+y)4xy3=16xy   xy(x+y)=12xy xy(x+y)12xy=0 xy(x+y12)=0 If xy=0 x=0,y=0 Also x+y12=0 y=12x  \left( {x + y} \right)\dfrac{{4xy}}{3} = 16xy \\\ \Rightarrow \;xy\left( {x + y} \right) = 12xy \\\ \Rightarrow xy\left( {x + y} \right) - 12xy = 0 \\\ \Rightarrow xy\left( {x + y - 12} \right) = 0 \\\ {\text{If }}xy = 0 \\\ \Rightarrow x = 0,y = 0 \\\ {\text{Also }}x + y - 12 = 0 \\\ \Rightarrow y = 12 - x \\\
Substituting yy in (3) we get,
(x+12x)(x12+x)2=16x(12x) 12(2x12)2=16(12xx2) 3×4(x6)2=4(12xx2) 3(x6)2=12xx2  \left( {x + 12 - x} \right){\left( {x - 12 + x} \right)^2} = 16x\left( {12 - x} \right) \\\ \Rightarrow 12{\left( {2x - 12} \right)^2} = 16\left( {12x - {x^2}} \right) \\\ \Rightarrow {\text{3}} \times 4{\left( {x - 6} \right)^2} = 4\left( {12x - {x^2}} \right) \\\ \Rightarrow 3{\left( {x - 6} \right)^2} = 12x - {x^2} \\\
Now use (ab)2=a2+b22ab{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab formula,
3x2+10836x=12xx2 4x248x+108=0  \Rightarrow 3{x^2} + 108 - 36x = 12x - {x^2} \\\ \Rightarrow 4{x^2} - 48x + 108 = 0 \\\
By dividing the whole equation by 44 we get,
x212x+27=0{x^2} - 12x + 27 = 0
Now we will use factorisation method to solve this equation,
x29x3x+27=0 x(x9)3(x9)=0 (x3)(x9)=0 x=3,9  y=12x y=9,3   {x^2} - 9x - 3x + 27 = 0 \\\ \Rightarrow x\left( {x - 9} \right) - 3\left( {x - 9} \right) = 0 \\\ \Rightarrow \left( {x - 3} \right)\left( {x - 9} \right) = 0 \\\ \Rightarrow x = 3,9 \\\ \therefore {\text{ }}y = 12 - x \\\ \Rightarrow y = 9,3{\text{ }} \\\
So, the values of xx are 0,3,90,3,9 and corresponding values of yy are 0,9,30,9,3
The combinations are:
(0,0) (3,9) (9,3)  \left( {0,0} \right) \\\ \left( {3,9} \right) \\\ \left( {9,3} \right) \\\

Note: Whenever you have to solve these types of questions, firstly solve one of the two equations for one of the variables in terms of the other and then substitute the expression for this variable into the second equation. Then solve for the remaining variable, then we simply substitute that solution into either of the original equations to find the value of the first variable. Thus, we get our desirable answer i.e. the values of xx and yy.