Question
Question: Solve the following equations: 14. $|||x-2|-2|-2|=2$ 15. $|4x+3|+|3x-4|=12$ 16. Solve $|x^2-2x+8...
Solve the following equations:
- ∣∣∣x−2∣−2∣−2∣=2
- ∣4x+3∣+∣3x−4∣=12
- Solve ∣x2−2x+8∣=8

x = -4, 0, 4, 8; x = -11/7, 13/7; x = 0, 2
Solution
Here are the solutions to the given equations.
14. ∣∣∣x−2∣−2∣−2∣=2
Explanation: We solve the equation by peeling off the absolute values layer by layer. ∣∣∣x−2∣−2∣−2∣=2 implies ∣∣x−2∣−2∣−2=2 or ∣∣x−2∣−2∣−2=−2.
Case 1: ∣∣x−2∣−2∣−2=2 ∣∣x−2∣−2∣=4 This implies ∣x−2∣−2=4 or ∣x−2∣−2=−4. Subcase 1.1: ∣x−2∣−2=4 ∣x−2∣=6 This implies x−2=6 or x−2=−6. x=8 or x=−4. Subcase 1.2: ∣x−2∣−2=−4 ∣x−2∣=−2 Since the absolute value cannot be negative, there are no real solutions in this subcase.
Case 2: ∣∣x−2∣−2∣−2=−2 ∣∣x−2∣−2∣=0 This implies ∣x−2∣−2=0. ∣x−2∣=2 This implies x−2=2 or x−2=−2. x=4 or x=0.
Combining all solutions from Case 1 and Case 2, the solutions are x∈{−4,0,4,8}.
15. ∣4x+3∣+∣3x−4∣=12
Explanation: We identify the critical points where the expressions inside the absolute values change sign. These are 4x+3=0⟹x=−3/4 and 3x−4=0⟹x=4/3. These points divide the number line into three intervals: (−∞,−3/4), [−3/4,4/3), and [4/3,∞). We solve the equation in each interval.
Interval 1: x<−3/4 In this interval, 4x+3<0 and 3x−4<0. So, ∣4x+3∣=−(4x+3) and ∣3x−4∣=−(3x−4). The equation becomes: −(4x+3)−(3x−4)=12 −4x−3−3x+4=12 −7x+1=12 −7x=11 x=−11/7. Since −11/7≈−1.57 and −3/4=−0.75, x=−11/7 is in the interval (−∞,−3/4). This is a valid solution.
Interval 2: −3/4≤x<4/3 In this interval, 4x+3≥0 and 3x−4<0. So, ∣4x+3∣=4x+3 and ∣3x−4∣=−(3x−4). The equation becomes: (4x+3)−(3x−4)=12 4x+3−3x+4=12 x+7=12 x=5. Since 4/3≈1.33, x=5 is not in the interval [−3/4,4/3). This is not a valid solution.
Interval 3: x≥4/3 In this interval, 4x+3≥0 and 3x−4≥0. So, ∣4x+3∣=4x+3 and ∣3x−4∣=3x−4. The equation becomes: (4x+3)+(3x−4)=12 4x+3+3x−4=12 7x−1=12 7x=13 x=13/7. Since 13/7≈1.86 and 4/3≈1.33, x=13/7 is in the interval [4/3,∞). This is a valid solution.
Combining all valid solutions, the solutions are x∈{−11/7,13/7}.
16. ∣x2−2x+8∣=8
Explanation: We solve the equation by considering the two cases for the expression inside the absolute value. ∣x2−2x+8∣=8 implies x2−2x+8=8 or x2−2x+8=−8.
Case 1: x2−2x+8=8 x2−2x=0 Factor out x: x(x−2)=0 This gives x=0 or x=2.
Case 2: x2−2x+8=−8 x2−2x+16=0 We check the discriminant of this quadratic equation, Δ=b2−4ac. Here a=1,b=−2,c=16. Δ=(−2)2−4(1)(16)=4−64=−60. Since the discriminant is negative (Δ<0), the quadratic equation has no real roots.
Combining all real solutions from Case 1 and Case 2, the solutions are x∈{0,2}.