Solveeit Logo

Question

Question: Solve the following equation: \({\tan ^2}2\theta + 2\tan 3\theta \tan 2\theta - 1 = 0\)...

Solve the following equation:
tan22θ+2tan3θtan2θ1=0{\tan ^2}2\theta + 2\tan 3\theta \tan 2\theta - 1 = 0

Explanation

Solution

Hint : In this particular question use the concept of some basic trigonometric identities such as, tan x = (sin x/cos x), cos2x=cos2xsin2x\cos 2x = {\cos ^2}x - {\sin ^2}x, 2sinxcosx=sin2x2\sin x\cos x = \sin 2x, cotx=tan(±π2x)\cot x = \tan \left( {\dfrac{{ \pm \pi }}{2} - x} \right) so use these identities to reach the solution of the question.

Complete step by step solution :
Given trigonometric equation is
tan22θ+2tan3θtan2θ1=0{\tan ^2}2\theta + 2\tan 3\theta \tan 2\theta - 1 = 0
Now this equation is also written as
2tan3θtan2θ=1tan22θ\Rightarrow 2\tan 3\theta \tan 2\theta = 1 - {\tan ^2}2\theta
Now as we know that tan x = (sin x/cos x), so use this property in the above equation we have,
2sin3θcos3θsin2θcos2θ=1sin22θcos22θ\Rightarrow 2\dfrac{{\sin 3\theta }}{{\cos 3\theta }}\dfrac{{\sin 2\theta }}{{\cos 2\theta }} = 1 - \dfrac{{{{\sin }^2}2\theta }}{{{{\cos }^2}2\theta }}
2sin3θcos3θsin2θcos2θ=cos22θsin22θcos22θ\Rightarrow 2\dfrac{{\sin 3\theta }}{{\cos 3\theta }}\dfrac{{\sin 2\theta }}{{\cos 2\theta }} = \dfrac{{{{\cos }^2}2\theta - {{\sin }^2}2\theta }}{{{{\cos }^2}2\theta }}
Now cancel out the common terms from the denominator of both sides of the above equation, and use the property that, cos2x=cos2xsin2xcos4x=cos22xsin22x\cos 2x = {\cos ^2}x - {\sin ^2}x \Rightarrow \cos 4x = {\cos ^2}2x - {\sin ^2}2x so we have,
2sin3θcos3θsin2θ=cos4θcos2θ\Rightarrow 2\dfrac{{\sin 3\theta }}{{\cos 3\theta }}\sin 2\theta = \dfrac{{\cos 4\theta }}{{\cos 2\theta }}
Now take 2sin2θ2\sin 2\theta from the L.H.S to the denominator of the R.H.S we have,
sin3θcos3θ=cos4θ2sin2θcos2θ\Rightarrow \dfrac{{\sin 3\theta }}{{\cos 3\theta }} = \dfrac{{\cos 4\theta }}{{2\sin 2\theta \cos 2\theta }}
Now as we know that, 2sinxcosx=sin2x2sin2xcos2x=cos4x2\sin x\cos x = \sin 2x \Rightarrow 2\sin 2x\cos 2x = \cos 4x, so use this property in the above equation we have,
sin3θcos3θ=cos4θsin4θ\Rightarrow \dfrac{{\sin 3\theta }}{{\cos 3\theta }} = \dfrac{{\cos 4\theta }}{{\sin 4\theta }}
Now as we know that, (sin x/cos x) = tan x and (cos x/sin x) = cot x, so use this property in the above equation we have,
tan3θ=cot4θ\Rightarrow \tan 3\theta = \cot 4\theta
Now as we know that, cotx=tan(±π2x)\cot x = \tan \left( {\dfrac{{ \pm \pi }}{2} - x} \right), so use this property in the above equation we have,
tan3θ=tan(±π24θ)\Rightarrow \tan 3\theta = \tan \left( {\dfrac{{ \pm \pi }}{2} - 4\theta } \right)
Now cancel out tan from both sides we have,
3θ=(±π24θ)\Rightarrow 3\theta = \left( {\dfrac{{ \pm \pi }}{2} - 4\theta } \right)
7θ=±π2\Rightarrow 7\theta = \dfrac{{ \pm \pi }}{2}
θ=±π14\Rightarrow \theta = \dfrac{{ \pm \pi }}{{14}}
θ=π14,π14\Rightarrow \theta = \dfrac{\pi }{{14}}, - \dfrac{\pi }{{14}}
So this is the required solution of the given trigonometric equation.
So this is the required answer.

Note : Whenever we face such types of questions the key concept we have to remember is that always recall the basic trigonometric identities which is the basis of the above solution and which is all stated above, so first simplify the equation using these identities as above we will get the required solution of the given equation.