Solveeit Logo

Question

Question: Solve the following equation: \({{\tan }^{-1}}x+2{{\cot }^{-1}}x=\dfrac{2\pi }{3}\)...

Solve the following equation:
tan1x+2cot1x=2π3{{\tan }^{-1}}x+2{{\cot }^{-1}}x=\dfrac{2\pi }{3}

Explanation

Solution

- Hint: In the given equation, convert the left hand side of the equation in terms of cot1x{{\cot }^{-1}}x using the trigonometric inverse identity tan1x+cot1x=π2{{\tan }^{-1}}x+{{\cot }^{-1}}x=\dfrac{\pi }{2}. Then solve the equation and find the value of cot1x{{\cot }^{-1}}x and then take cot on both sides to get the value of x.

Complete step-by-step solution -

The equation given in the question is:
tan1x+2cot1x=2π3{{\tan }^{-1}}x+2{{\cot }^{-1}}x=\dfrac{2\pi }{3}
Rewriting the above equation as:
tan1x+cot1x+cot1x=2π3{{\tan }^{-1}}x+{{\cot }^{-1}}x+{{\cot }^{-1}}x=\dfrac{2\pi }{3}
We know from the inverse trigonometric identity that tan1x+cot1x=π2{{\tan }^{-1}}x+{{\cot }^{-1}}x=\dfrac{\pi }{2} so substituting this value of tan1x+cot1x{{\tan }^{-1}}x+{{\cot }^{-1}}x in the above equation we get,

& \dfrac{\pi }{2}+{{\cot }^{-1}}x=\dfrac{2\pi }{3} \\\ & \Rightarrow {{\cot }^{-1}}x=\dfrac{2\pi }{3}-\dfrac{\pi }{2} \\\ & \Rightarrow {{\cot }^{-1}}x=\dfrac{4\pi -3\pi }{6} \\\ & \Rightarrow {{\cot }^{-1}}x=\dfrac{\pi }{6} \\\ \end{aligned}$$ Now, taking cot on both the sides of the equation we get, $\cot \left( {{\cot }^{-1}}x \right)=\cot \dfrac{\pi }{6}$ We know from the trigonometric ratios that $\cot \dfrac{\pi }{6}=\sqrt{3}$ so substituting this value in the above equation we get, $x=\sqrt{3}$ _Hence, the value of x in the given equation is $x=\sqrt{3}$._ Note: You can verify the value of x that you are getting above by substituting the value of x in the given equation ${{\tan }^{-1}}x+2{{\cot }^{-1}}x=\dfrac{2\pi }{3}$ and then check whether after substituting the value of x in the given equation, you are getting left hand side equal to right hand side or not. ${{\tan }^{-1}}x+2{{\cot }^{-1}}x=\dfrac{2\pi }{3}$ Solving L.H.S of the above equation we get, ${{\tan }^{-1}}\left( \sqrt{3} \right)+2{{\cot }^{-1}}\left( \sqrt{3} \right)$ We know from the inverse trigonometric values that: ${{\tan }^{-1}}\left( \sqrt{3} \right)=\dfrac{\pi }{3}$ ${{\cot }^{-1}}\left( \sqrt{3} \right)=\dfrac{\pi }{6}$ Plugging the above values in the expression ${{\tan }^{-1}}\left( \sqrt{3} \right)+2{{\cot }^{-1}}\left( \sqrt{3} \right)$ we get, $\begin{aligned} & \dfrac{\pi }{3}+2\dfrac{\pi }{6} \\\ & =\dfrac{\pi }{3}+\dfrac{\pi }{3}=\dfrac{2\pi }{3} \\\ \end{aligned}$ The R.H.S of the given equation is equal to $\dfrac{2\pi }{3}$. From the above simplification of the left hand side of the given equation we get $\dfrac{2\pi }{3}$ which is equal to the right hand side R.H.S of the given equation. So, the value of x that we have calculated above is satisfying the given equation. Hence, the value of x that we have got above is correct.