Solveeit Logo

Question

Question: Solve the following equation, \({{\tan }^{-1}}\dfrac{1}{4}+2{{\tan }^{-1}}\dfrac{1}{5}+{{\tan }^{-1}...

Solve the following equation, tan114+2tan115+tan116+tan11x=π4{{\tan }^{-1}}\dfrac{1}{4}+2{{\tan }^{-1}}\dfrac{1}{5}+{{\tan }^{-1}}\dfrac{1}{6}+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4}.

Explanation

Solution

Hint:To prove the equation given in the question, we should have some knowledge of a few inverse trigonometric formulas like, tan1a+tan1b=tan1(a+b1ab){{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right) and 2tan1a=tan1(2a1a2)2{{\tan }^{-1}}a={{\tan }^{-1}}\left( \dfrac{2a}{1-{{a}^{2}}} \right). We also should remember a few standard trigonometric angles like tanπ4=1\tan \dfrac{\pi }{4}=1. We can prove the given equation by using these formulas.

Complete step-by-step answer:
In this question, we have been asked to solve the value of x in the equation, tan114+2tan115+tan116+tan11x=π4{{\tan }^{-1}}\dfrac{1}{4}+2{{\tan }^{-1}}\dfrac{1}{5}+{{\tan }^{-1}}\dfrac{1}{6}+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4}. Now, we know that 2tan1x=tan1(2x1x2)2{{\tan }^{-1}}x={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right). So, we can write the given equality for x=15x=\dfrac{1}{5} as,
tan114+tan1[2(15)1(15)2]+tan116+tan11x=π4{{\tan }^{-1}}\dfrac{1}{4}+{{\tan }^{-1}}\left[ \dfrac{2\left( \dfrac{1}{5} \right)}{1-{{\left( \dfrac{1}{5} \right)}^{2}}} \right]+{{\tan }^{-1}}\dfrac{1}{6}+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4}
Now, we will simplify it further to get,
tan114+tan1[(25)1(125)]+tan116+tan11x=π4 tan114+tan1[(25)25125]+tan116+tan11x=π4 tan114+tan1[2×255×24]+tan116+tan11x=π4 tan114+tan1[512]+tan116+tan11x=π4 \begin{aligned} & {{\tan }^{-1}}\dfrac{1}{4}+{{\tan }^{-1}}\left[ \dfrac{\left( \dfrac{2}{5} \right)}{1-\left( \dfrac{1}{25} \right)} \right]+{{\tan }^{-1}}\dfrac{1}{6}+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4} \\\ & \Rightarrow {{\tan }^{-1}}\dfrac{1}{4}+{{\tan }^{-1}}\left[ \dfrac{\left( \dfrac{2}{5} \right)}{\dfrac{25-1}{25}} \right]+{{\tan }^{-1}}\dfrac{1}{6}+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4} \\\ & \Rightarrow {{\tan }^{-1}}\dfrac{1}{4}+{{\tan }^{-1}}\left[ \dfrac{2\times 25}{5\times 24} \right]+{{\tan }^{-1}}\dfrac{1}{6}+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4} \\\ & \Rightarrow {{\tan }^{-1}}\dfrac{1}{4}+{{\tan }^{-1}}\left[ \dfrac{5}{12} \right]+{{\tan }^{-1}}\dfrac{1}{6}+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4} \\\ \end{aligned}
Now, we know that tan1a+tan1b=tan1(a+b1ab){{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right). So, for a=14a=\dfrac{1}{4} and b=512b=\dfrac{5}{12}, we get the equation as,
tan1[14+512114×512]+tan116+tan11x=π4{{\tan }^{-1}}\left[ \dfrac{\dfrac{1}{4}+\dfrac{5}{12}}{1-\dfrac{1}{4}\times \dfrac{5}{12}} \right]+{{\tan }^{-1}}\dfrac{1}{6}+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4}
And we can further simplify it as,
tan1[3+51248548]+tan116+tan11x=π4 tan1[8×4812×43]+tan116+tan11x=π4 tan1[3243]+tan116+tan11x=π4 \begin{aligned} & {{\tan }^{-1}}\left[ \dfrac{\dfrac{3+5}{12}}{\dfrac{48-5}{48}} \right]+{{\tan }^{-1}}\dfrac{1}{6}+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4} \\\ & \Rightarrow {{\tan }^{-1}}\left[ \dfrac{8\times 48}{12\times 43} \right]+{{\tan }^{-1}}\dfrac{1}{6}+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4} \\\ & \Rightarrow {{\tan }^{-1}}\left[ \dfrac{32}{43} \right]+{{\tan }^{-1}}\dfrac{1}{6}+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4} \\\ \end{aligned}
We will again apply the formula tan1a+tan1b=tan1(a+b1ab){{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right). So, for a=3243a=\dfrac{32}{43} and b=16b=\dfrac{1}{6}, we get the equation as,
tan1[3243+1613243×16]+tan11x=π4{{\tan }^{-1}}\left[ \dfrac{\dfrac{32}{43}+\dfrac{1}{6}}{1-\dfrac{32}{43}\times \dfrac{1}{6}} \right]+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4}
And we can simplify it further as,
tan1[192+4343×62583243×6]+tan11x=π4 tan1[235×258226×258]+tan11x=π4 tan1[235226]+tan11x=π4 \begin{aligned} & {{\tan }^{-1}}\left[ \dfrac{\dfrac{192+43}{43\times 6}}{\dfrac{258-32}{43\times 6}} \right]+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4} \\\ & \Rightarrow {{\tan }^{-1}}\left[ \dfrac{235\times 258}{226\times 258} \right]+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4} \\\ & \Rightarrow {{\tan }^{-1}}\left[ \dfrac{235}{226} \right]+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4} \\\ \end{aligned}
We know that tanπ4=1\tan \dfrac{\pi }{4}=1. So, we can write π4=tan11\dfrac{\pi }{4}={{\tan }^{-1}}1. Therefore, we get the equation as,
tan1[235226]+tan11x=tan11{{\tan }^{-1}}\left[ \dfrac{235}{226} \right]+{{\tan }^{-1}}\dfrac{1}{x}={{\tan }^{-1}}1
And if we keep the terms with x on one side and the others on the other side, then we get the above equation as follows,
tan11x=tan11tan1[235226]{{\tan }^{-1}}\dfrac{1}{x}={{\tan }^{-1}}1-{{\tan }^{-1}}\left[ \dfrac{235}{226} \right]
Now, we know that tan1atan1b=tan1(ab1+ab){{\tan }^{-1}}a-{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right). So, applying that formula for a=1a=1 and b=235226b=\dfrac{235}{226}, we get the equation as,
tan11x=tan1[12352261+1×235226]{{\tan }^{-1}}\dfrac{1}{x}={{\tan }^{-1}}\left[ \dfrac{1-\dfrac{235}{226}}{1+1\times \dfrac{235}{226}} \right]
And on further simplification, we get,
tan11x=tan1[226235226226+235226] tan11x=tan1[9×226461×226] \begin{aligned} & {{\tan }^{-1}}\dfrac{1}{x}={{\tan }^{-1}}\left[ \dfrac{\dfrac{226-235}{226}}{\dfrac{226+235}{226}} \right] \\\ & \Rightarrow {{\tan }^{-1}}\dfrac{1}{x}={{\tan }^{-1}}\left[ \dfrac{-9\times 226}{461\times 226} \right] \\\ \end{aligned}
Now, we will take the tangent ratio of the equality. So, we get,
tan(tan11x)=tan(tan1(9×226461×226))\tan \left( {{\tan }^{-1}}\dfrac{1}{x} \right)=\tan \left( {{\tan }^{-1}}\left( \dfrac{-9\times 226}{461\times 226} \right) \right)
And we know that tan(tan1α)=α\tan \left( {{\tan }^{-1}}\alpha \right)=\alpha . So, we get the equation as,
1x=9461 x=4619 \begin{aligned} & \dfrac{1}{x}=\dfrac{-9}{461} \\\ & \Rightarrow x=\dfrac{-461}{9} \\\ \end{aligned}
Hence, we can say that we get x=4619x=\dfrac{-461}{9} for the equation, tan114+2tan115+tan116+tan11x=π4{{\tan }^{-1}}\dfrac{1}{4}+2{{\tan }^{-1}}\dfrac{1}{5}+{{\tan }^{-1}}\dfrac{1}{6}+{{\tan }^{-1}}\dfrac{1}{x}=\dfrac{\pi }{4}.

Note: There is a possibility of calculation mistakes in this question due to the long calculations involved. Also, sometimes, we write the wrong formula of tan1a+tan1b{{\tan }^{-1}}a+{{\tan }^{-1}}b and tan1atan1b{{\tan }^{-1}}a-{{\tan }^{-1}}b, which are, tan1a+tan1b=tan1(a+b1ab){{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right) and tan1atan1b=tan1(ab1+ab){{\tan }^{-1}}a-{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right). So, one should be careful in writing the formulas.