Solveeit Logo

Question

Question: Solve the following equation: \[\sqrt {\dfrac{{\text{x}}}{{{\text{1 - x}}}}} {\text{ + }}\sqrt {\dfr...

Solve the following equation: x1 - x + 1 - xx = 216\sqrt {\dfrac{{\text{x}}}{{{\text{1 - x}}}}} {\text{ + }}\sqrt {\dfrac{{{\text{1 - x}}}}{{\text{x}}}} {\text{ = 2}}\dfrac{1}{6}

Explanation

Solution

Hint: Taking L.C.M. of R.H.S. , will give (x + 1 - x)({\text{x + 1 - x)}} term in numerator.
Given, x1 - x + 1 - xx = 216\sqrt {\dfrac{{\text{x}}}{{{\text{1 - x}}}}} {\text{ + }}\sqrt {\dfrac{{{\text{1 - x}}}}{{\text{x}}}} {\text{ = 2}}\dfrac{1}{6} -- (1)

We need to find the value of x by solving the equation (1). For solving the equation we are going to use the law of surds which states ab = ab\sqrt {\dfrac{{\text{a}}}{{\text{b}}}} {\text{ = }}\dfrac{{\sqrt {\text{a}} }}{{\sqrt {\text{b}} }} .On applying this law on equation (1) we get, x1 - x + 1 - xx = 216\dfrac{{\sqrt {\text{x}} }}{{\sqrt {{\text{1 - x}}} }}{\text{ + }}\dfrac{{\sqrt {{\text{1 - x}}} }}{{\sqrt {\text{x}} }}{\text{ = 2}}\dfrac{1}{6}
Now, for further simplification we are taking L.C.M. on the left hand side.
x×x + 1 - x×1 - x1 - x×x = 216\dfrac{{\sqrt {\text{x}} \times \sqrt {\text{x}} {\text{ + }}\sqrt {1{\text{ - x}}} \times \sqrt {{\text{1 - x}}} }}{{\sqrt {{\text{1 - x}}} \times \sqrt {\text{x}} }}{\text{ = 2}}\dfrac{1}{6} -- (2)

Another law of surds states that a×b = a×b\sqrt {\text{a}} \times \sqrt {\text{b}} {\text{ = }}\sqrt {{\text{a}} \times {\text{b}}} . Using this law on equation (2), we get
x×x + (1 - x)×(1 - x)(1 - x)×x = 216\dfrac{{\sqrt {{\text{x}} \times {\text{x}}} {\text{ + }}\sqrt {\left( {{\text{1 - x}}} \right) \times \left( {{\text{1 - x}}} \right)} }}{{\sqrt {\left( {{\text{1 - x}}} \right) \times {\text{x}}} }}{\text{ = 2}}\dfrac{1}{6} . And from law of indices we know that am × an = (a)m + n{{\text{a}}^{\text{m}}}{\text{ }} \times {\text{ }}{{\text{a}}^{\text{n}}}{\text{ = }}{\left( {\text{a}} \right)^{{\text{m + n}}}}.
In our case m = n = 1. Hence, we get
x2 + (1 - x)2(1 - x)×x = 216\dfrac{{\sqrt {{{\text{x}}^2}} {\text{ + }}\sqrt {{{\left( {{\text{1 - x}}} \right)}^2}} }}{{\sqrt {\left( {1{\text{ - x}}} \right) \times {\text{x}}} }}{\text{ = 2}}\dfrac{1}{6}
Now, we know that a = a12\sqrt {\text{a}} {\text{ = }}{{\text{a}}^{\dfrac{1}{2}}} and another law of indices states that (am)n = amn{\left( {{{\text{a}}^{\text{m}}}} \right)^{\text{n}}}{\text{ = }}{{\text{a}}^{{\text{mn}}}}. Applying these laws on above equation, we get
x2×12 + (1 - x)2×12(1 - x)12×x12 = 216\dfrac{{{{\text{x}}^{2 \times \dfrac{1}{2}}}{\text{ + }}{{\left( {1{\text{ - x}}} \right)}^{2 \times \dfrac{1}{2}}}}}{{{{\left( {{\text{1 - x}}} \right)}^{\dfrac{1}{2}}} \times {{\text{x}}^{\dfrac{1}{2}}}}}{\text{ = 2}}\dfrac{1}{6} . Solving it further, we get

x + 1 - x(1 - x)12×x12 = 216\dfrac{{{\text{x + 1 - x}}}}{{{{\left( {{\text{1 - x}}} \right)}^{\dfrac{1}{2}}} \times {{\text{x}}^{\dfrac{1}{2}}}}}{\text{ = 2}}\dfrac{1}{6}
1(1 - x)12×x12 = 216\dfrac{1}{{{{\left( {1{\text{ - x}}} \right)}^{\dfrac{1}{2}}} \times {{\text{x}}^{\dfrac{1}{2}}}}}{\text{ = 2}}\dfrac{1}{6}
Since abc = ac + bc{\text{a}}\dfrac{{\text{b}}}{{\text{c}}}{\text{ = }}\dfrac{{{\text{ac + b}}}}{{\text{c}}} . Applying on above equation, we get
1(1 - x)12×x12 = 2×6 + 16\dfrac{1}{{{{\left( {1{\text{ - x}}} \right)}^{\dfrac{1}{2}}} \times {{\text{x}}^{\dfrac{1}{2}}}}}{\text{ = }}\dfrac{{2 \times 6{\text{ + }}1}}{6}
1(1 - x)12×x12 = 136\dfrac{1}{{{{\left( {1{\text{ - x}}} \right)}^{\dfrac{1}{2}}} \times {{\text{x}}^{\dfrac{1}{2}}}}}{\text{ = }}\dfrac{{13}}{6}
Now, for finding x, we need to perform squaring on both the sides of the equations. On squaring we get,
1(1 - x)×(x) = 16936\dfrac{1}{{\left( {{\text{1 - x}}} \right) \times \left( {\text{x}} \right)}}{\text{ = }}\dfrac{{169}}{{36}}
By cross-multiplication, we get
169(1x)(x) = 36169(1 - {\text{x)(x) = 36}}
Solving further we get,
169(x - x2) = 36 169x - 169x2 = 36   169({\text{x - }}{{\text{x}}^2}){\text{ = 36}} \\\ {\text{169x - 169}}{{\text{x}}^2}{\text{ = 36}} \\\ \\\
Sending each terms on one side, we get
169x2 - 169x + 36 = 0{\text{169}}{{\text{x}}^2}{\text{ - 169x + 36 = 0}} -- (3)
We have a quadratic equation in x. For finding the value of x, we are required to find the real roots of the equation. For any finding the root of any quadratic equation ax2 + bx + c = 0{\text{a}}{{\text{x}}^2}{\text{ + bx + c = 0}} , we can use the quadratic formula.
Quadratic formula,  x = b±b24ac2a{\text{ x = }}\dfrac{{ - {\text{b}} \pm \sqrt {{{\text{b}}^2} - 4{\text{ac}}} }}{{2{\text{a}}}} . In this formula we call the term b24ac\sqrt {{{\text{b}}^2} - 4{\text{ac}}} the determinant. If the determinant is positive then only, we will have real roots of the quadratic equation.
Comparing equation (3) with ax2 + bx + c = 0{\text{a}}{{\text{x}}^2}{\text{ + bx + c = 0}} , we get
a = 169, b = -169 and c = 36. Applying the quadratic formula we get,
x = 169±16924(169)(36)2(169) x = 169±2856124336338 x = 169±4225338 x = 169±65338 x = 13±526 x = 13+526 and x = 13 - 526 x = 1826 and x = 826 x = 913 and x = 413  {\text{x = }}\dfrac{{169 \pm \sqrt {{{169}^2} - 4(169)(36)} }}{{2(169)}} \\\ {\text{x = }}\dfrac{{169 \pm \sqrt {28561 - 24336} }}{{338}} \\\ {\text{x = }}\dfrac{{169 \pm \sqrt {4225} }}{{338}} \\\ {\text{x = }}\dfrac{{169 \pm 65}}{{338}} \\\ {\text{x = }}\dfrac{{13 \pm 5}}{{26}} \\\ {\text{x = }}\dfrac{{13 + 5}}{{26}}{\text{ and x = }}\dfrac{{13{\text{ - 5}}}}{{26}} \\\ {\text{x = }}\dfrac{{18}}{{26}}{\text{ and x = }}\dfrac{8}{{26}} \\\ {\text{x = }}\dfrac{9}{{13}}{\text{ and x = }}\dfrac{4}{{13}} \\\
We have two real roots of x. Now, for knowing the correct solution of the equation we need to havex1 - x > 0\sqrt {\dfrac{{\text{x}}}{{1{\text{ - x}}}}} {\text{ > 0}}.
For this to be true, x should lie in between (0, 1). And for both the value of x, the condition is true.
Hence, the solution of the equation is x = 913\dfrac{9}{{13}} and 413\dfrac{4}{{13}}

Note:- In these types of equations , it is required to eliminate square roots. But if we shouldn’t perform squaring in the first step .It will only complicate the problem. We should start with simplifying by using laws of indices and surds.