Question
Mathematics Question on Trigonometric Equations
Solve the following equation sin−153x+sin−154x=sin−1x
A
0,1,−1
B
0,−1
C
0,1
D
1,−1
Answer
0,1,−1
Explanation
Solution
We have, sin−153x+sin−154x=sin−1x \Rightarrow sin^{-1}\left\\{\frac{3x}{5}\sqrt{1-\frac{16x^{2}}{25}}+\frac{4x}{5}\sqrt{1-\frac{9x^{2}}{25}}\right\\} = sin^{-1}\,x ⇒3x25−16x2+4x25−9x2=25x ⇒x=0 or, 325−16x2+425−9x2=25 ⇒425−9x2=25−325−16x2 Squaring both sides, we get 16(25−9x2)=625+9(25−16x2)−15025−16x2 ⇒15025−16x2=450 ⇒25−16x2=3 Again squaring both sides, we get 25−16x2=9 ⇒x=±1 Hence, x=0, 1, −1 are the roots of the given equation.