Solveeit Logo

Question

Question: Solve the following equation: \({\log _{16}}x + {\log _4}x + {\log _2}x = 7\)...

Solve the following equation:
log16x+log4x+log2x=7{\log _{16}}x + {\log _4}x + {\log _2}x = 7

Explanation

Solution

Hint: We have to use the necessary logarithmic properties to find the value of x.

Complete step-by-step answer:
It is given to us that log16x+log4x+log2x=7{\log _{16}}x + {\log _4}x + {\log _2}x = 7
We know that [logab=1logba]\left[ {\because {{\log }_a}b = \dfrac{1}{{{{\log }_b}a}}} \right]
So, we will get
1logx16+1logx4+1logx2=7\Rightarrow \dfrac{1}{{{{\log }_x}16}} + \dfrac{1}{{{{\log }_x}4}} + \dfrac{1}{{{{\log }_x}2}} = 7
On simplification, we get
1logx24+1logx22+1logx2=7\Rightarrow \dfrac{1}{{{{\log }_x}{2^4}}} + \dfrac{1}{{{{\log }_x}{2^2}}} + \dfrac{1}{{{{\log }_x}2}} = 7
Now since we know that [nlogaM=logaMn]\left[ {\because n{{\log }_a}M = {{\log }_a}{M^n}} \right]
And hence on following the above formula we have,
14logx2+12logx2+1logx2=7\Rightarrow \dfrac{1}{{4{{\log }_x}2}} + \dfrac{1}{{2{{\log }_x}2}} + \dfrac{1}{{{{\log }_x}2}} = 7
And hence on taking 1logx2\dfrac{1}{{{{\log }_x}2}} common, we get,
[14+12+1]1logx2=7\left[ {\dfrac{1}{4} + \dfrac{1}{2} + 1} \right]\dfrac{1}{{{{\log }_x}2}} = 7
And hence on doing the simplification, we have
[74]1logx2=7\left[ {\dfrac{7}{4}} \right]\dfrac{1}{{{{\log }_x}2}} = 7
1logx2=7×[47]\Rightarrow \dfrac{1}{{{{\log }_x}2}} = 7 \times \left[ {\dfrac{4}{7}} \right]
Here 7 will get cancelled out
log2x=4\Rightarrow {\log _2}x = 4 [logab=1logba]\left[ {\because {{\log }_a}b = \dfrac{1}{{{{\log }_b}a}}} \right]
24=x\Rightarrow {2^4} = x
x=16\Rightarrow x = 16

Note: This question consists of equations comprising logarithmic functions. So we just need to use the appropriate logarithmic properties. Mistakes should be avoided in application of these properties.