Solveeit Logo

Question

Question: Solve the following equation for \(x\). \({{\tan }^{-1}}\left( \dfrac{1-x}{1+x} \right)=\dfrac{1}{...

Solve the following equation for xx.
tan1(1x1+x)=12tan1x{{\tan }^{-1}}\left( \dfrac{1-x}{1+x} \right)=\dfrac{1}{2}{{\tan }^{-1}}x

Explanation

Solution

Hint: For solving this question we will use the formula tan1(xy1+xy)=tan1xtan1y{{\tan }^{-1}}\left( \dfrac{x-y}{1+xy} \right)={{\tan }^{-1}}x-{{\tan }^{-1}}y to write tan1(1x1+x)=tan11tan1x{{\tan }^{-1}}\left( \dfrac{1-x}{1+x} \right)={{\tan }^{-1}}1-{{\tan }^{-1}}x directly. After that, we will find the value of tan1x{{\tan }^{-1}}x and use the formula tan11=π4{{\tan }^{-1}}1=\dfrac{\pi }{4} and tanπ6=13\tan \dfrac{\pi }{6}=\dfrac{1}{\sqrt{3}} for calculating the suitable value of xx.

Complete step-by-step solution -
Given:
We have to find a suitable value of xx and we have following equation:
tan1(1x1+x)=12tan1x{{\tan }^{-1}}\left( \dfrac{1-x}{1+x} \right)=\dfrac{1}{2}{{\tan }^{-1}}x
Now, before we proceed we should know the following formula:
tan1(xy1+xy)=tan1xtan1y (if xy>1).............................(1) tan11=π4..................................(2) tan(tan1x)=x where xR..........................(3) tanπ6=13.................................(4) \begin{aligned} &{{\tan }^{-1}}\left( \dfrac{x-y}{1+xy} \right)={{\tan }^{-1}}x-{{\tan }^{-1}}y\text{ }\left( \text{if }xy>-1 \right).............................\left( 1 \right) \\\ & {{\tan }^{-1}}1=\dfrac{\pi }{4}..................................\left( 2 \right) \\\ & \tan \left( {{\tan }^{-1}}x \right)= x\ \text{where}\ x \in \text{R} ..........................\left( 3 \right) \\\ & \tan \dfrac{\pi }{6}=\dfrac{1}{\sqrt{3}}.................................\left( 4 \right) \\\ \end{aligned}
Now, we will use the formula from the equation (1) to write tan1(1x1+x)=tan11tan1x{{\tan }^{-1}}\left( \dfrac{1-x}{1+x} \right)={{\tan }^{-1}}1-{{\tan }^{-1}}x . Then,
tan1(1x1+x)=12tan1x tan11tan1x=12tan1x tan11=tan1x+12tan1x tan11=32tan1x \begin{aligned} & {{\tan }^{-1}}\left( \dfrac{1-x}{1+x} \right)=\dfrac{1}{2}{{\tan }^{-1}}x \\\ & \Rightarrow {{\tan }^{-1}}1-{{\tan }^{-1}}x=\dfrac{1}{2}{{\tan }^{-1}}x \\\ & \Rightarrow {{\tan }^{-1}}1={{\tan }^{-1}}x+\dfrac{1}{2}{{\tan }^{-1}}x \\\ & \Rightarrow {{\tan }^{-1}}1=\dfrac{3}{2}{{\tan }^{-1}}x \\\ \end{aligned}
Now, we will use the formula from the equation (2) to write tan11=π4{{\tan }^{-1}}1=\dfrac{\pi }{4} in the above equation. Then,
tan11=32tan1x π4=32tan1x 32tan1x=π4 tan1x=π4×23 tan1x=π6 \begin{aligned} & {{\tan }^{-1}}1=\dfrac{3}{2}{{\tan }^{-1}}x \\\ & \Rightarrow \dfrac{\pi }{4}=\dfrac{3}{2}{{\tan }^{-1}}x \\\ & \Rightarrow \dfrac{3}{2}{{\tan }^{-1}}x=\dfrac{\pi }{4} \\\ & \Rightarrow {{\tan }^{-1}}x=\dfrac{\pi }{4}\times \dfrac{2}{3} \\\ & \Rightarrow {{\tan }^{-1}}x=\dfrac{\pi }{6} \\\ \end{aligned}
Now, we will apply tan\tan function on both sides in the above equation. Then,
tan1x=π6 tan(tan1x)=tanπ6 \begin{aligned} & {{\tan }^{-1}}x=\dfrac{\pi }{6} \\\ & \Rightarrow \tan \left( {{\tan }^{-1}}x \right)=\tan \dfrac{\pi }{6} \\\ \end{aligned}
Now, we will use the formula from the equation (3) to write tan(tan1x)=x\tan \left( {{\tan }^{-1}}x \right)=x where xRx \in \text{R} in the above equation and formula from the equation (4) to write tanπ6=13\tan \dfrac{\pi }{6}=\dfrac{1}{\sqrt{3}} in the above equation. Then,
tan(tan1x)=tanπ6 x=13 \begin{aligned} & \tan \left( {{\tan }^{-1}}x \right)=\tan \dfrac{\pi }{6} \\\ & \Rightarrow x=\dfrac{1}{\sqrt{3}} \\\ \end{aligned}
Now, from the above result, it is evident that, 13>1\dfrac{1}{\sqrt{3}}>-1 so, we can write tan1(1x1+x)=tan11tan1x{{\tan }^{-1}}\left( \dfrac{1-x}{1+x} \right)={{\tan }^{-1}}1-{{\tan }^{-1}}x . Then, the value of xx will be equal to 13\dfrac{1}{\sqrt{3}} .
Thus, if tan1(1x1+x)=12tan1x{{\tan }^{-1}}\left( \dfrac{1-x}{1+x} \right)=\dfrac{1}{2}{{\tan }^{-1}}x then, the suitable value of xx will be 13\dfrac{1}{\sqrt{3}}.

Note: Here, the student should first understand what is asked in the question and then proceed in the right direction to get the correct result quickly. Then, we should apply formulas of inverse trigonometric functions like tan1(xy1+xy)=tan1xtan1y{{\tan }^{-1}}\left( \dfrac{x-y}{1+xy} \right)={{\tan }^{-1}}x-{{\tan }^{-1}}y in a correct manner and we should check our final answer with the condition of the formula for the justification of our answer. Moreover, we should avoid calculation mistakes while solving to get the correct result.