Solveeit Logo

Question

Question: Solve the following equation for \[0<\theta <\dfrac{\pi }{2}\] : \[\tan \theta +\tan 2\theta +\ta...

Solve the following equation for 0<θ<π20<\theta <\dfrac{\pi }{2} :
tanθ+tan2θ+tan3θ=0\tan \theta +\tan 2\theta +\tan 3\theta =0
A. tanθ=0\tan \theta =0
B. tan2θ=0\tan 2\theta =0
C. tan3θ=0\tan 3\theta =0
D. tanθtan2θ=2\tan \theta \tan 2\theta =2

Explanation

Solution

Hint: Split the tan3θ\tan 3\theta by using the formula tan(A+B)=tanA+tanB1tanAtanB\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B} where A= 2θ2\theta and B= θ\theta here A and B values are taken like that because the problem is in terms of θ\theta , 2θ2\theta . After substituting the obtained expression in the given expression then we will get two values.

Complete step-by-step answer:
Given that 0<θ<π20 < \theta < \dfrac{\pi }{2}
tanθ+tan2θ+tan3θ=0\tan \theta +\tan 2\theta +\tan 3\theta =0 . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
We can write the tan3θ\tan 3\theta as follows
tan3θ=tan(2θ+θ)\tan 3\theta =\tan \left( 2\theta +\theta \right)
tan3θ=tan2θ+tanθ1tan2θtanθ\Rightarrow \tan 3\theta =\dfrac{\tan 2\theta +\tan \theta }{1-\tan 2\theta \tan \theta }
Cross multiplying the above equation we will get as follows,
tan3θtan2θtanθtan3θ=tan2θ+tanθ\Rightarrow \tan 3\theta -\tan 2\theta \tan \theta \tan 3\theta =\tan 2\theta +\tan \theta . . . . . . . . . . . . . . . . . . . . . (2)
Now substitute the value of equation (2) in the equation (1) then we will get,
tanθ+tan2θ+tan3θ=0\Rightarrow \tan \theta +\tan 2\theta +\tan 3\theta =0
tan3θtan2θtanθtan3θ+tan3θ=0\Rightarrow \tan 3\theta -\tan 2\theta \tan \theta \tan 3\theta +\tan 3\theta =0
2tan3θtan2θtanθtan3θ=0\Rightarrow 2\tan 3\theta -\tan 2\theta \tan \theta \tan 3\theta =0
Now take tan3θ\tan 3\theta common from each term then we will get,
tan3θ[2tan2θtanθ]=0\Rightarrow \tan 3\theta \left[ 2-\tan 2\theta \tan \theta \right] =0 . . . . . . . . . . . . . . . . . (3)
Case-1
tan3θ=0\tan 3\theta =0 . . . . . . . . . . . . (4)
Case-2
2tan2θtanθ=02-\tan 2\theta \tan \theta =0
tanθtan2θ=2\Rightarrow \tan \theta \tan 2\theta =2 . . . . . . . . . . . . . . (5)
So the correct option for above question is option (C) and option (D).

Note: To solve this type of problems we have to know trigonometric formulas like formula for expansion of tan(A+B)\tan \left( A+B \right) . In trigonometric problems first we have to remember all formulas related to the problem and use the formula in which we will get the required answer. Generally by seeing the problem we will understand the approach to the problem.